M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 3024    Accepted Submission(s): 930 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b…
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的值吗? 通过简单地列出若干项 F 即可发现,某一项的值是由若干 a 和 b 相乘得到的,而他们的指数是连续的两项斐波那契数. 因此可以通过斐波那契数列的矩阵快速幂求法得到,注意需要指数的降幂公式. #include<stdio.h> #include<string.h> typedef…
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 1000000009 struct node{ ][]; } t; long long int n; node mul(node a,node b){//矩阵乘法 node c; int i,j,k; ;i<;i++){ ;j<;j++){ c.c[i][j]=; ;k<;k++) c.c[i][j]+=(a…
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真的烦 #include<iostream> #include<string.h> #include<cmath> #include<cstdio> using namespace std; typedef long long ll; <<; ; );…
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 复制 5 输出样例#1: 复制 5 输入样例#2: 复制 10 输出样例#2: 复制 5…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的值吗?   Input 输入包含多组测试数据:每组数据占一行,包含3个整数a, b…
Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17171   Accepted: 11999 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequen…
P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位: 思路: 1/gcd(F[n],F[m])=F[gcd(n,m)].所以先求出gcd(n,m),然后构造斐波那契数列的矩阵快速幂. #include <algorithm> #include <iterator> #include <iostream> #include…
考试的时候想到了矩阵快速幂+快速幂,但是忘(bu)了(hui)欧拉定理. 然后gg了35分. 题目显而易见,让求一个数的幂,幂是斐波那契数列里的一项,考虑到斐波那契也很大,所以我们就需要欧拉定理了 p是素数,所以可以搞  然后我们用矩阵快速幂求出幂,然后快速幂即可解决问题 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; #de…
Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9630   Accepted: 6839 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence…
题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace std; ; ; int a; struct Matrix { int m[maxn][maxn]; }ans,res,w,head; Matrix mul(Matrix a,Matrix b,int n) { Matrix tmp; ; i <= n; i++) ; j <= n; j++) t…
装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次.公式比较好推.f[n] = f[n-1]*f[n-2].然后a和b系数都是呈斐波那契规律增长的.需要先保存下来指数.但是太大了.在这里不能用小费马定理.要用降幂公式取模.(A^x)%C=A^(x%phi(C)+phi(C))%C(x>=phi(C)) Phi[C]表示不大于C的数中与C互质的数的个数,可以用欧拉函数来求. 矩阵快速幂也不…
一开始数据没加强,一个简单的程序可以拿过 gcd(f[n],f[m])=f[gcd(n,m)] 下面这个是加强数据之后的80分代码 #include<bits/stdc++.h> using namespace std; typedef long long ll; ll gcd(ll a,ll b){ return b?gcd(b,a%b):a; } int main() { ll n,m,a=,b=,c=;cin>>n>>m; ;i<gcd(n,m);i++)…
题目链接:https://vjudge.net/problem/UVA-10689 题解: 代码如下: #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <cmath> #include <queue> #include <stack> #include…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5895 f(n)=f(n-2)+2*f(n-1) f(n)*f(n-1)=f(n-2)*f(n-1)+2*f(n-1)*f(n-1); 2*f(n-1)*f(n-1)=f(n)*f(n-1)-f(n-2)*f(n-1); 累加可得 g(n) = f(n)*f(n+1)/2   然后这个公式:A^x % m = A^(x%phi(m)+phi(m)) % m (x >= phi(m))   反正比赛没做…
题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 4492    Accepted Submission(s): 1397 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1]…
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩阵\(B\)得到\(k\times k\)的矩阵,其中第\(i\)列第\(j\)行的数就是\(A\)的第\(i\)行所有数与\(B\)的第\(j​\)列分别相乘再相加 考虑使用矩阵乘法优化DP,为了最后得到\(f(n)​\),我们设矩阵\(\text{base}​\),使\(\begin{bmatr…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 3087    Accepted Submission(s): 953 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a,…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 1534    Accepted Submission(s): 435 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a,…
[题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[n]的值. [思路] #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; ; i…
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2: 55 说明…
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格式 输入格式: 输入包含一行6个整数.依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内. 输出格式: 输出包含一行一个整数,即an除以m的余数. 输入输出样例 输入样例#1: 1 1 1 1 10 7 输出样例#1: 6 说明 数列…
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatrix} p&q\\ 1&0\\ \end{bmatrix}^{n-2}=\begin{bmatrix}f_n\\f_{n-1} \end{bmatrix}\] 水题 代码 #include <bits/stdc++.h> #define int long long using na…
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入描述 Input Description 输入包含一行6个整数.依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内. 输出描述…
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30000. 输入描述 Input Description 第一行一个数T(1<=T<=10000). 以下T行,每行两个数,n,q(n<=109, 1<=q<=30000) 输出描述 Output Description 文件包含T行,每行对应一个答案. 样例输入 Sample I…
Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的(即使总数目相同). 所以先考虑第一次分裂后,一个固定小球体数量的情况: 2.第一次分裂后,最后的小球体数量固定.想要方案数不同,必须连接方式不同. 可以列出dp式子,f[n](以n结尾砍一刀)=f[n-2]+f[n-3]+...+f[2]+f[0],而f[0]=1,f[1]=0 而fibo[n]-1…
R - M斐波那契数列 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4549 Appoint description:  System Crawler  (2016-04-24) Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2…
一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和即可.当然也可以 公式法:\(f_1+f_2+...+f_n=f_{n+2}-1\) 证明其 只需要数学归纳法即可. 当k==2时 不难发现 要求出\((f_1+f_2+...f_n)+(f_2+...f_{n+1})+...(f_n+...f_{2n-1})\) 把这个东西 画成图 可以发现是一个…
传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发现\(f_n\)其实就是由\(c^{t_1},f_1^{t_2},f_2^{t_3},f_3^{t_4}\)相乘得到,因此我们可以分别用矩阵快速幂求出\(t_1,t_2,t_3,t_4\),最后用快速幂求得答案. 对于\(n<=3\)的我们直接输出即可,\(n>3\)的我们先将\(n\)减去\(3…
用矩阵求斐波那契数列,快速幂log(n),只用求最后4位(加和乘的运算中前面的位数无用) #include <stdio.h> #include <stdlib.h> int main() { /* (x y)(x y)= (x*x+y*s x*y+y*t) =(x*x+y*s y*(x+t)) (s t)(s t) (s*x+t*s s*y+t*t) (s*(x+t) t*t+y*s) (x y)(a b)= (x*a+y*c x*b+y*d) (s t)(c d) (s*a+t…