Spark RDD、DataFrame和DataSet的区别】的更多相关文章

版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   转载请标明出处:小帆的帆的专栏 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. GC的性能开销 频繁的创建和销毁对象, 势必会增加GC   import org.apache.spark.sql.SQLContext import org.…
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了DataFrame和RDD的区别.左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构.而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数…
在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势 共性: 1.RDD.DataFrame.Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利 2.三者都有惰性机制,在进行创建.转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,计算情况下,如果代码里面有创建.转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,如 va…
总结: 1.RDD是一个Java对象的集合.RDD的优点是更面向对象,代码更容易理解.但在需要在集群中传输数据时需要为每个对象保留数据及结构信息,这会导致数据的冗余,同时这会导致大量的GC. 2.DataFrame是在1.3引入的,它包含数据与schema2部分信息,其中数据就是真正的数据,而不是一个java对象.它不容易理解,同时对java支持不好,还有一个缺点是非强类型,这会导致部分错误在运行时才会发现.优点是数据不需要加载到一个java对象,减少GC,大大优化了数据在集群间传播与本地序列化…
预览 Spark SQL是用来处理结构化数据的Spark模块.有几种与Spark SQL进行交互的方式,包括SQL和Dataset API. 本指南中的所有例子都可以在spark-shell,pyspark shell或者spark R shell中执行. SQL Spark SQL的一个用途是执行SQL查询.Spark SQL还可以从现有的Hive中读取数据,本文下面有讲如何配置此功能.运行SQL时,结果会以Dataset/DataFrame返回. Dataset和DataFrame Data…
基于数据集的处理:从物理存储上加载数据,然后操作数据,然后写入物理存储设备.比如Hadoop的MapReduce.        缺点:1.不适合大量的迭代  2. 交互式查询  3. 不能复用曾经的结果或中间计算结果 基于工作集的处理:如Spark的RDD.RDD具有如下的弹性: 1. 自动的进行内存和磁盘数据存储的切换           2. 基于Lineage的高效容错           3. Task如果失败会自动进行特定次数的重试           4. Stage如果失败会自动…
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但因Spark发展迅速(本文的写作时值Spark 1.6.2发布之际,并且Spark 2.0的预览版本也已发布许久),因此请随时关注Spark SQL官方文档以了解最新信息. 文中使用Scala对Spark SQL进行讲解,并且代码大多都能在spark-shell中运行,关于这点请知晓. 概述 相比于…
一.Spark SQL简介 Spark SQL是Spark中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将SQL查询与Spark程序无缝混合,允许您使用SQL或DataFrame API对结构化数据进行查询: 支持多种开发语言: 支持多达上百种的外部数据源,包括Hive,Avro,Parquet,ORC,JSON和JDBC等: 支持HiveQL语法以及Hive SerDes和UDF,允许你访问现有的Hive仓库: 支持标准的JDBC和ODBC连接: 支持优化器,列式存储和代码生成…
一.Spark SQL简介 Spark SQL 是 Spark 中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 DataFrame API 对结构化数据进行查询: 支持多种开发语言: 支持多达上百种的外部数据源,包括 Hive,Avro,Parquet,ORC,JSON 和 JDBC 等: 支持 HiveQL 语法以及 Hive SerDes 和 UDF,允许你访问现有的 Hive 仓库: 支持标准的 JDBC…
转载自:http://blog.csdn.net/wo334499/article/details/51689549 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. GC的性能开销 频繁的创建和销毁对象, 势必会增加GC   import org.apache.spark.sql.SQLContext import o…
弹性分布式数据集(Resilient Distributed Dataset,RDD) RDD是Spark一开始就提供的主要API,从根本上来说,一个RDD就是你的数据的一个不可变的分布式元素集合,在集群中跨节点分布,可以通过若干提供了转换和处理的底层API进行并行处理.每个RDD都被分为多个分区,这些分区运行在集群不同的节点上. RDD支持两种类型的操作,转化操作(transform)和行动操作(action).转化操作会有一个RDD生成一个新的RDD,行动操作则要计算出来一个结果.spark…
这三个数据集看似经常用,但是真正归纳总结的时候,很容易说不出来 三个之间的关系与区别参考我的另一篇blog  http://www.cnblogs.com/xjh713/p/7309507.html 则三个用代码转换如下: 1.RDD -> Dataset val ds = rdd.toDS() 2. RDD -> DataFrame     val df = spark.read.json(rdd) 3. Dataset -> RDD    val rdd = ds.rdd 4. Da…
一.SparkSQL发展: Shark是一个为spark设计的大规模数据仓库系统,它与Hive兼容      Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来(by swapping out the physical execution engine part of Hive).这个方法使得Shark的用户可以加速Hive的查询,但是Shark继承了Hive的大且复杂的代码基线使得Shark很难优化和维护.随着我们遇到了性能优化的上限,以及集成SQL的一些复杂的分…
What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are just getting started with Apache Spark, the 2.0 release is the one to start with as the APIs have just gone through a major overhaul to improve ease-of-…
spark中RDD.DataFrame.DataSet都是spark的数据集合抽象,RDD针对的是一个个对象,但是DF与DS中针对的是一个个Row RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信,还是IO操作都需要对对象的结构和数据进行序列化和反序列化 GC的性能开销,频繁的创建和销毁对象,势必会增加GC开销 DataFrameDataFrame引入了schema和off-hea…
Apache Spark吸引广大社区开发者的一个重要原因是:Apache Spark提供极其简单.易用的APIs,支持跨多种语言(比如:Scala.Java.Python和R)来操作大数据. 本文主要讲解Apache Spark 2.0中RDD,DataFrame和Dataset三种API:它们各自适合的使用场景:它们的性能和优化:列举使用DataFrame和DataSet代替RDD的场景.文章大部分聚焦DataFrame和Dataset,因为这是Apache Spark 2.0的API统一的重…
作者:Jules S. Damji 译者:足下 本文翻译自 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets ,翻译已获得原作者 Jules S. Damji 的授权. 最令开发者们高兴的事莫过于有一组 API,可以大大提高开发者们的工作效率,容易使用.非常直观并且富有表现力.Apache Spark 广受开发者们欢迎的一个重要原因也在于它那些非常容易使用的 API,可以方便地通过多种语言,如 Scala.Java…
引言 Apache Spark 2.2 以及以上版本提供的三种 API - RDD.DataFrame 和 Dataset,它们都可以实现很多相同的数据处理,它们之间的性能差异如何,在什么情况下该选用哪一种呢? RDD 从一开始 RDD 就是 Spark 提供的面向用户的主要 API.从根本上来说,一个 RDD 就是你的数据的一个不可变的分布式元素集合,在集群中跨节点分布,可以通过若干提供了转换和处理的底层 API 进行并行处理. 在正常情况下都不推荐使用 RDD 算子 在某种抽象层面来说,使用…
RDD.DataFrame.DataSet的区别和联系 共性: 1)都是spark中得弹性分布式数据集,轻量级 2)都是惰性机制,延迟计算 3)根据内存情况,自动缓存,加快计算速度 4)都有partition分区概念 5)众多相同得算子:map flatmap 等等 区别: 1)RDD不支持SQL 2)DF每一行都是Row类型,不能直接访问字段,必须解析才行 3)DS每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获 得每一行的信息 4)DataFrame与Datase…
前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功能.但也有些功能暂时无法使用.比如reduceByKey,在DataFrame和DataSet里是没有的.所以觉得有必要做一些梳理. 准备工作 测试数据,json格式: { "DEVICENAME": "test1", "LID": 17050131…
简述 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同:DataFrame多了数据的结构信息,即schema.RDD是分布式的 Java对象的集合.DataFrame是分布式的Row对象的集合. 作者:jacksu来源:简书|2016-03-21 10:40   RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了…
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以有许多分区(partitions),每个分区又拥有大量的记录(records). 五个特征: dependencies:建立RDD的依赖关系,主要rdd之间是宽窄依赖的关系,具有窄依赖关系的rdd可以在同一个stage中进行计算. partition:一个rdd会有若干个分区,分区的大小决定了对这个…
转化: RDD.DataFrame.Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换 DataFrame/Dataset转RDD: 这个转换很简单 val rdd1=testDF.rdd val rdd2=testDS.rdd RDD转DataFrame: import spark.implicits._ val testDF = rdd.map {line=> (line._1,line._2) }.toDF("col1","col2")…
RDD是Spark建立之初的核心API.RDD是不可变分布式弹性数据集,在Spark集群中可跨节点分区,并提供分布式low-level API来操作RDD,包括transformation和action. RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存…
本課主題 DataSet 实战 DataSet 实战 SparkSession 是 SparkSQL 的入口,然后可以基于 sparkSession 来获取或者是读取源数据来生存 DataFrameReader,在 Spark 2.x 版本中已经没有 DataFrame 的 API,它变成了 DataSet[Row] 类型的数据. 创建 SparkSession val spark = SparkSession .builder() .master("local") .appName(…
[Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子 from pyspark.sql.types import * schema = StructType( [ StructField("age",IntegerType(),True), StructField("name",StringType(),True), StructField("pcode",StringType(),True)…
[Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json("people.json") peopleRDD = peopleDF.map(lambda row: (row.pcode,row.name)) peopleRDD.take(5) Out[5]: [(u'94304', u'Alice'),(u'94304', u'…
[Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子 $ hdfs dfs -cat people.json {"name":"Alice","pcode":"94304"}{"name":"Brayden","age":30,"pcode":"94304"}{"name&…
目录 基本概念 官方文档 概述 含义 RDD出现的原因 五大属性 以单词统计为例,一张图熟悉RDD当中的五大属性 解构图 RDD弹性 RDD特点 分区 只读 依赖 缓存 checkpoint 基本概念 官方文档 介绍RDD的官方说明:http://spark.apache.org/docs/latest/rdd-programming-guide.html 概述 含义 RDD (Resilient Distributed Dataset) 叫做 弹性分布式数据集,是Spark中最基本的数据抽象,…
如题所示,SparkSQL /DataFrame /Spark RDD谁快? 按照官方宣传以及大部分人的理解,SparkSQL和DataFrame虽然基于RDD,但是由于对RDD做了优化,所以性能会优于RDD. 之前一直也是这么理解和操作的,直到最近遇到了一个场景,打破了这种不太准确的认识. 某些场景下,RDD要比DataFrame快,性能有天壤之别. 需求如下: 以下两份数据求交集,结果输出url. 数据一,json格式,地址我们用path_json表示,大小10T,每一行数据格式:{"id&…