原帖地址:http://blog.csdn.net/qll125596718/article/details/8243404 1.基本Kmeans算法[1] 选择K个点作为初始质心  repeat      将每个点指派到最近的质心,形成K个簇      重新计算每个簇的质心  until 簇不发生变化或达到最大迭代次数  时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为记录数(采样数),n为维数 空间复杂度:O((m+K)n),其中,K为簇的数目,m为记录数,n为维数 2.注…
写在前面:之前想分类图像的时候有看过k-means算法,当时一知半解的去使用,不懂原理不懂使用规则...显然最后失败了,然后看了<机器学习>这本书对k-means算法有了理论的认识,现在通过贾志刚老师的视频有了实际应用的理解. k-means算法原理 注:还是和之前一样,核心都是别人的,我只是知识的搬运工并且加上了自己的理解.弄完之后发现理论部分都是别人的~~没办法这算法太简单了... k-means含义:无监督的聚类算法. 无监督:就是不需要人干预,拿来一大批东西直接放进算法就可以进行分类.…
kmeans一般在数据分析前期使用,选取适当的k,将数据聚类后,然后研究不同聚类下数据的特点. 算法原理: (1) 随机选取k个中心点: (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类: (3) 更新中心点为每类的均值: (4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步数,误差不变. 空间复杂度o(N) 时间复杂度o(I*K*N) 其中N为样本点个数,K为中心点个数,I为迭代次数 为什么迭代后误差逐渐减小: SSE=  对于 而言,求导…
聚类的基本思想 俗话说"物以类聚,人以群分" 聚类(Clustering)是一种无监督学习(unsupervised learning),简单地说就是把相似的对象归到同一簇中.簇内的对象越相似,聚类的效果越好. 定义:给定一个有个对象的数据集,聚类将数据划分为个簇,而且这个划分满足两个条件:(1)每个簇至少包含一个对象:(2)每个对象属于且仅属于一个簇. 基本思想:对给定的,算法首先给出一个初始的划分方法,以后通过反复迭代的方法改变划分,使得每一次改进之后的划分方案都较前一次更好. 监…
上一篇博客写了k-means聚类算法和改进的k-means算法.这篇博客就贴出相应的MATLAB和C++代码. 下面是MATLAB代码,实现用k-means进行切割: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 功能:实现怎样利用Kmeans聚类实现图像的切割. 时间:2015-07 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function kmeans_segmentation() clear;c…
随机森林算法是机器学习.计算机视觉等领域内应用较为广泛的一个算法.它不仅可以用来做分类(包括二分类和多分类),也可用来做回归预测,也可以作为一种数据降维的手段. 在随机森林中,将生成很多的决策树,并不像在决策树那样只生成唯一的树.随机森林在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,每个树都是一个独立的判断分支,互相之间彼此独立.随机森林在运算量没有显著提高的前提下提高了预测精度,并且对多元公线性不敏感,判断结果缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量…
备注:OpenCV版本 2.4.10 在数据的挖掘和分析中,最基本和首要的任务是对数据进行分类,解决这个问题的常用方法是机器学习技术.通过使用已知实例集合中所有样本的属性值作为机器学习算法的训练集,导出一个分类机制后,再使用这个分类机制判别一个新实例的属性,并且可以通过不间断的学习,持续丰富和优化该分类机制,使机器具有像大脑一样的思考能力. 常用的分类方法有决策树分类.贝叶斯分类等.然而这些方法存在的问题是当数据量巨大时,分类的准确率不高.对于这样的困难问题,Boosting及其衍生算法提供了一…
kMeans算法原理见我的上一篇文章.这里介绍K-Means的Java实现方法,参考了Python的实现方法. 一.数据点的实现 package com.meachine.learning.kmeans; import java.util.ArrayList; /** * 数据点,有n维数据 * */ public class Point { private static int num; private int id; private int dimensioNum; // 维度 privat…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在之前发表的线性回归.逻辑回归.神经网络.SVM支持向量机等算法都是监督学习算法,需要样本进行训练,且 样本的类别是知道的.接下来要介绍的是非监督学习算法,其样本的类别是未知的.非监督学习算法中,比较有代表性 的就是聚类算法.而聚类算法中,又有 分割方法:K-means 分层次方法:ROCK . Chemeleon 基于密度的方法:DBSCAN 基于网格的方法:STING . WaveCluster 以上只是部分算…
下面的demo是根据kmeans算法原理实现的demo,使用到的数据是kmeans.txt 1.658985 4.285136 -3.453687 3.424321 4.838138 -1.151539 -5.379713 -3.362104 0.972564 2.924086 -3.567919 1.531611 0.450614 -3.302219 -3.487105 -1.724432 2.668759 1.594842 -3.156485 3.191137 3.165506 -3.999…
kmeans算法的原理参考:http://www.cnblogs.com/mikewolf2002/p/3368118.html 下面学习一下opencv中kmeans函数的使用.      首先我们通过OpenCV中的随机数产生器RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出分类簇的中心点.      随机产生的簇的数量是2到5之间的值,采样点的数量范围是1-1000,一维矩阵centers存放kmeans算法结束…
K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法.包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法. 1. K-Means原理初探 K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇.让簇内的点尽量紧密的连在一…
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 假设要把样本集分为k个类别,算法描述如下: (1)适当选择k个类的初始中心,最初一般为随机选取: (2)在每次迭代中,对任意一个样本,分别求其到k个中心的欧式距离,将该样本归到距离最短的中心所在的类: (3)利用…
原文地址:http://blog.csdn.net/likezhaobin/article/details/6892176 原文地址:http://blog.csdn.net/likezhaobin/article/details/6892629 图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值.图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要…
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报  分类: 机器视觉(34)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记…
文章内容转载自:http://blog.csdn.net/sinat_35512245/article/details/55051306                                http://blog.csdn.net/baimafujinji/article/details/50570824 -------------------------------------------------------------------------------------------…
k-means 聚类算法原理: 1.从包含多个数据点的数据集 D 中随机取 k 个点,作为 k 个簇的各自的中心. 2.分别计算剩下的点到 k 个簇中心的相异度,将这些元素分别划归到相异度最低的簇.两个点之间的相异度大小采用欧氏距离公式衡量,对于两个点 T0(x1,y2)和 T1(x2,y2),T0 和 T1 之间的欧氏距离为: 欧氏距离越小,说明相异度越小 3.根据聚类结果,重新计算 k 个簇各自的中心,计算方法是取簇中所有点各自维度的算术平均数. 4.将 D 中全部点按照新的中心重新聚类.…
[机器学习]算法原理详细推导与实现(六):k-means算法 之前几个章节都是介绍有监督学习,这个章解介绍无监督学习,这是一个被称为k-means的聚类算法,也叫做k均值聚类算法. 聚类算法 在讲监督学习的时候,通常会画这样一张图: 这时候需要用logistic回归或者SVM将这些数据分成正负两类,这个过程称之为监督学习,是因为对于每一个训练样本都给出了正确的类标签. 在无监督学习中,经常会研究一些不同的问题.假如给定若干个点组成的数据集合: 所有的点都没有像监督学习那样给出类标签和所谓的学习样…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
(上接第二章) 4.3.1 KMeans 算法流程 算法的过程如下: (1)从N个数据文档随机选取K个文档作为质心 (2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 (3)重新计算已经得到的各个类的质心 (4)迭代(2)~(3)步直至新的质心与原质心相等或者小于指定阀值,算法结束. 4.3.2 辅助函数 (1)文件数据转为矩阵:file2matrix def file2matrix(path,delimiter): recordlist = [] fp = open(pat…
      本章我们用kmeans算法实现一个简单图像的分割.如下面的图像,我们知道图像分3个簇,背景.白色的任务,红色的丝带以及帽子.       Mat img = cv::imread("../kmeans.jpg");     namedWindow("image");     imshow("image", img);      首先我们会生成采样点,采样点包括原始图像中的所有像素点,采样点用32位浮点数表示,接着我们会定义一个标记矩阵…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等.最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等.K-means作为其中比较简单的一种肯定是要好好掌握的.今天就讲讲K-means的基本原理和代码实现.其中基本原理简述(主要是因为:1,K-means比较简单:2,网上有很多讲K-means基本原理的),重点放在代码实现上. 1, K-means基本原理 K均值(K-means)聚类算法是无监督聚类(聚类(clu…
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解. 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了.如下图所示: 第二步.根据距离进行分类 红色和蓝色的点代表了我们随机选取的质心.既然我们要让这一堆点的分为两堆,且让分好的每一堆点离其质心最近的话,我们首…
数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必须经过评估确认其是否符合数据挖掘标准.以决定预期结果,…
这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数据进行分类,而Kmeans则是将无标签的数据聚簇成为一类.接下来主要是我对<机器学习实战>算法示例的代码实现和理解. 首先叙述下算法项目<对地图上的俱乐部进行聚类>的要求:朋友Drew希望让我们带她去城里庆祝生日,由于其他一些朋友也会过来,所以需要提供一个大家都可行的计划,Drew给出…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(1) : K-means算法 1. 简介 K-means算法是一类无监督的聚类算法,目的是将没有标签的数据分成若干个类,每一个类都是由相似的数据组成.这个类的个数一般是认为给定的. 2. 原理 假设给定一个数据集$\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2,...,\mathbf{x}_N \}$, 和类的个数K…
聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为k个聚类,以便使得所获得的聚类满足: 同一聚类中的对象相似度较高:而不同聚类中的对象相似度较小. k - means的算法原理: (文/qinm08(简书作者) 原文链接:http://www.jianshu.com/p/32e895a940a2) 使用K-Means算法进行聚类,过程非常直观:(a…
基于ReliefF和K-means算法的医学应用实例 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必…
K-Means 算法 在数据挖掘中, k-Means 算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. 问题 K-Means算法主要解决的问题如下图所示.我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法(Wikipedia链接) K-Means 要解决的问题 算法概要 这个算法其实很简单,如下图所示: K-Means 算法…