hdu5823(反演dp)】的更多相关文章

听说3^n也能水过去.. 其实应该是个经典题,求图染色这个np问题. 把问题拆成独立集来进行dp可以在3^n之内水过去. 拆成独立集的时候就发现,等价与一个经典的反演dp问题 然后复杂度就变成了 n*n*2^n 另外,偷到一套头文件宏定义. #include <math.h> #include <time.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include…
题意:给定连通图,求出连通图的所有子图的颜色数. 一个图的颜色数,指最少的颜色数,给图染色,使得有边相邻的点之间颜色不同. 思路:首先想法是DFS枚举,然后计算颜色,发现对于给定图,求颜色不会求? 毕竟是很乱的无向图. 那么考虑DP:dp[s]=min(dp[s0]+1),s0是s的子集,且满足s^s0是独立集. 那么复杂度是O(3^N): 因为有补集,还可以用反演DP???我第一次遇到.好菜啊,有机会补一下. #include<bits/stdc++.h> #define uint unsi…
咋一看,至少要用3^n才能做到. 但. 首先定义: 可以发现只要求出a' b' 那么直接可以得出c' 那么如何求a'呢 //dp求a',其实就是分别用[0,n)来更新a' ; i < n; i++) ; s < ( << n); s++) ) a[s] += a[s ^ << i]; 有了a'之后,观察式子发现直接逆着写,就可以从a'->a 然后反演即为: ; i < n; i++) ; s < ( << n); s++) ) c[s] -…
题目大意: 给你一棵树,树上的点编号为\(1-n\).选两个点\(i.j\),能得到的得分是\(\phi(a_i*a_j)*dis(i,j)\),其中\(dis(i,j)\)表示\(a\)到\(b\)的最短距离.求一次选择能得到的得分的期望 推式子 显然是求\(\frac{1}{n(n-1)} \sum\limits_{i=1}^n \sum\limits_{j=1}^n \phi(i*j)*dis(i,j)\) 有这样一个式子\(\phi(i*j)=\frac{\phi(i)*phi(j)*g…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3622 题解 首先显然如果 \(n - k\) 为奇数那么就是无解.否则的话,"糖果"比"药片"大的组数,应该为 \(\frac {n+k}2\). 考虑到多恰好 \(k\) 组不太好求,但是如果选了 \(k\) 组必须是"糖果"比"药片"大,这个方案数还是很好求的. 首先是选了 \(k\) 组必须是"糖果&quo…
Codeforces 题目传送门 & 洛谷题目传送门 upd on 2021.10.20:修了个 typo( 这是一道 *2600 的 D2E,然鹅为啥我没想到呢?wtcl/dk 首先第一步我就没想到/kk,看到"恰好"二字我们可以想到一个东西叫做二项式反演(qwq 这个套路在刷多项式题时经常见到,可咋换个场景就想不到了呢?显然是我多项式白学了/doge).我们设 \(f_k\) 表示恰好 \(k\) 个完美数的排列个数,\(g_k\) 表示钦定 \(k\) 个位置满足 \(|…
题目大意 zjt 是个神仙. 一天,zjt 正在和 yww 玩猜数游戏. zjt 先想一个 \([1,n]\) 之间的整数 \(x\),然后 yww 开始向他问问题. yww 每次给 zjt 一个区间 \([l,r](1\leq l\leq r\leq n)\),并询问:\(x\) 是否在区间 \([l,r]\) 内? 对于 NOIP 爆零的 yww 来说,他只会用二分法去猜出这个数. 但是 zjt 决定加大难度.他只会在 yww 给出所有想问的问题之后一次性给出答案. 请你帮助 yww 算出,…
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT 后来做了 HDU 4035 终于会了.... 感谢 雕哥的帮助 !!! 题意 #2542. 「PKUWC 2018」随机游走 题解 原本的模型好像我不会那个暴力dp .... 就是直接统计点集中最后经过的点的期望 , 也就是点集中到所有点步数最大值的期望 . (也许可以列方程高斯消元 ? 似乎没分)…
题目链接 啊啊啊我在干什么啊.怎么这么颓一道题做这么久.. 又记错莫比乌斯反演式子了(╯‵□′)╯︵┻━┻ \(Description\) 给定\(n\).有一个初始为空的集合\(S\).令\(g\)表示S中所有数的\(\gcd\).每次随机选择一个\([1,n]\)中的数加到集合\(S\)中去,直到\(g=1\).求集合\(S\)的期望大小.(原题目描述为数列长度,\(n\)是指\(m\),我自己都看混了=-=) \(n\leq10^5\). \(Solution\) 首先不要想\(f[i][…
P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- 如果:$f(n)=\sum_{i=0}^{n}C(n,i)g(i)$ 那么:$g(n)=\sum_{i=0}^{n}(-1)^{n-i}\ C(n,i)f(i)$ ---------------------------- 如果:$f(k)=\sum_{i=k}^{n}C(i,k)g(i)$ 那么:…
stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd$ 为 $1$ 时停止.问这个序列的期望长度对 $10^9+7$ 取模的值. $1\le m\le 10^5$. 首先很容易想到DP:$f_i$ 表示目前的 $\gcd$ 为 $i$,期望还要多少次才能结束. 那么有 $f_1=0$. 转移,直接枚举即可:$f_i=1+\dfrac{1}{m}\su…
题目链接: 洛谷 BZOJ 题目大意:有两个长为 $n$ 的序列 $a,b$,问有多少种重排 $b$ 的方式,使得满足 $a_i>b_i$ 的 $i$ 的个数比满足 $a_i<b_i$ 的 $i$ 的个数恰好多 $k$ 个.答案对 $10^9+9$ 取模. $1\le n\le 2000,0\le k\le n$.保证 $a,b$ 中没有相同的数. 首先根据小学数学知识可知,$a_i>b_i$ 的个数应该是 $\frac{n+k}{2}$.如果 $n+k$ 不是偶数那么就无解. 那么就可…
题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下”的期望步数. 设 f[ i ] 表示从根走到 i ,再走期望几步就能走到点集中的某个点.有 \( f[i]=\frac{1}{d[i]}\sum\limits_{j}(f[j]+1) \) ( j 是和 i 有边的点) 于是要“树上高斯消元”.其实就是尝试写成 \( f[i]=a[i]*f[st]…
反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant \(m\). He performs the following algorithm: Select a random integer \(x\) uniformly in range from \(1\) to \(m\) and append it to the end of \(a\). Co…
题面 传送门 思路 本文中所有$m$是原题目中的$k$ 首先,这个一看就是$d=1,2,3$数据分治 d=1 不说了,很简单,$m^n$ d=2 先上个$dp$试试 设$dp[i][j]$表示前$i$个复读机用掉了$j$个机会,注意这个东西最后求出来的是分配方案,还要乘以一个$n!$ $dp[i][j]=\sum_{k=0}^j [d|k]\binom{n-j+k}{k}dp[i-1][j-k]$ $dp[i][j]=\sum_{k=0}^j [d|k]\frac{(n-j+k)!}{(n-j)…
题目:https://loj.ac/problem/2542 因为走到所有点的期望就是所有点期望的最大值,所以先最值反演一下,问题变成从根走到一个点集任意一点就停止的期望值: 设 \( f[x] \),则 \( f[x] = \frac{f[fa]+1+\sum\limits_{v \in son} (f[v]+1)}{d[x]} \),其中 \( d[x] \) 是 \( x \) 的度数: 因为其实只和 \( fa \) 有关,所以套路是设 \( f[x] = K[x] * f[fa] +…
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{n - k}{2} + k\)个的方案数,我们记为\(K\) 思路1 直接求恰好不好求,想到二项式反演: 如果有 \[b_k = \sum\limits_{i = k}^{n} {i \choose k} a_i\] 那么有 \[a_k = \sum\limits_{i = k}^{n} (-1)^…
[传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥,这会使时间复杂度非常高,那么就考虑枚举行后\(dp\).设\(f[i]\)表示存在\(i\)列有线,任意一行无线的方案数,\(g[i[\)表示至少有\(i\)列有线,任意一行无线的方案数,那么 \[g[i]=\sum\limits_{k=i}^n C(i,k)f[i]\] 二项式反演得 \[f[0…
传送门 解题思路 第一种方法是状压\(dp\),设\(f(S)\)为状态\(S\)到取完的期望步数,那么\(f(S)\)可以被自己转移到,还可以被\(f(S|(1<<i))\)转移到,\(i\)为\(S\)中没有的一个元素. 第二种方法是\(Min-Max\)反演,要求的其实就是\(max(S)\),反演得\(max(S)=\sum\limits_{T\subseteq S}min(T)\),而\(min(T)=\sum p(i)\)(\(i\)是\(T\)的子集). 代码 状压 #inclu…
蒟蒻数学渣呀,根本不会做. 解法是参考 https://blog.csdn.net/xs18952904/article/details/88785210 这位大佬的. 状态的设计和转移如上面博客一样:dp[i]代表当前序列的gcd为i的期望长度. 那么可以写出状态转移方程:dp[i]=(1+(x/m)∑(j|i,j≠i)dp[j]) / (1-(m/i)/m) (写得有点乱,其实和上面大佬的一样的) 这里要说一下的是 x=∑(t=1,t<=m) [ gcd(t,i)==j ]  就是怎么求1<…
LINK:游戏 还是过于弱鸡 没看出来是个二项式反演,虽然学过一遍 但印象不深刻. 二项式反演:有两种形式 一种是以恰好和至多的转换 一种是恰好和至少得转换. 设\(f_i\)表示至多的方案数 \(g_i\)表示恰好的方案. 则有 \(f_n=\sum_{i=0}^nC(n,i)\cdot g_i\) 根据二项式反演则有 \(g_n=\sum_{i=0}^n(-1)^{n-i}\cdot C(n,i)\cdot f_i\) 设\(f_i\)表示至少的方案数 \(g_i\)表示恰好的方案. 则有…
题面传送门 没错这就是我 boom0 的那场 NOIOL 的 T3 一年前,我在 NOIOL #2 的赛场上折戟沉沙,一年后,我从倒下的地方爬起. 我成功了,我不再是从前那个我了 我们首先假设 A 拥有的点为 \(p_1,p_2,\cdots,p_m\),B 拥有的点为 \(q_1,q_2,\cdots,q_m\),显然 A.B 出牌的顺序是无关紧要的,因此我们不妨假设 A 就按 \(p_1,p_2,\cdots,p_m\) 的顺序出牌,题目就等价于有多少个 \(q\) 的排列 \(r\) 满足…
题目链接: http://codeforces.com/contest/1139/problem/D 题意: 在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时,停止加入,求序列的期望长度 数据范围: $1 \leq m \leq 10^{9}$ 分析: 定义$f[x$]为$gcd$等于$x$时把序列$gcd和$改变成1的期望长度,定义$G(x,y)$为$i$在1到$n$范围,满足$gcd(x,i)=y$,$i$的数量,得到以下公式: $$f[i]=1+\f…
题目分析: 题目是求$E(MAX_{i=1}^n(ai))$, 它等于$E(\sum_{s \subset S}{(-1)^{|s|-1}*min(s))} = \sum_{s \subset S}{(-1)^{|s|-1}*E(min(s))}$. 那么设计期望DP,令$f[i][j][k]$表示前i个球,可选的区间为j个,球的个数是奇数还是偶数.然后就是要写一个高精度,不一定要真的写,可以yy出一种简便方法. 代码: #include<bits/stdc++.h> using namesp…
\[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后面这一块gcd的个数只可能是i的约数, 那么考虑枚举约数 \[ f[i] = 1 + \frac{1}{m}\sum_{d | i} f[d] cnt(d, i) \] \(cnt(d, i)\)表示和[1,m]内与i的gcd为d的数字个数 考虑这个东西能够怎么算, \(cnt(d, i)\)显然…
https://codeforces.com/contest/1139/problem/D 题意 每次从1,m中选一个数加入队列,假如队列的gcd==1停止,问队列长度的期望 题解 概率正着推,期望反着推 发现每加入一个数,gcd会变为原来gcd的因数 \(dp[x]\) - > \(dp[gcd(x,i)]\) 但是方程却是反方向的 图片 代码 #include<bits/stdc++.h> #define MOD 1000000007 #define MAXN 100005 #def…
LINK:CountTables 神题! 首先单独考虑行不同的情况 设\(f_i\)表示此时有i列且 行都不同. 那么显然有 \(f_i=(c^i)^\underline{n}\) 考虑设\(g_i\)表示此时有i列且 行列都不同. 考虑将\(g_i\)和\(f_i\)联系起来. 那么对于 \(f_m\) 考虑其有k列是本质不同的 那么有m-k列重复出现的 考虑把这m-k列给缩起来就变成了 n行k列 且行列都不同的矩阵了. 而且可以发现对于n行k列 且行列都不同的矩阵和有k列本质不同且不讲究分配…
卧槽,这么秀吗??? 暂时留坑...…
题面 思路 我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的 那就可以用Min-Max来容斥一下 设\(g_{s}\)是从x到s中任意一个点的最小步数 设\(f_{s}\)是从x到s中任意一个点的最大步数 然后就可以的得到 \(f_{s}=\sum_{t\subseteq s}(-1)^{|t|+1}g_t\) 然后考虑g怎么求 设\(p_i\)是i点到任意一个子集中的点的最小步数 有\(p_u=\frac{1}{du_u}(1+p_{fa_u})+\frac{1}{du_u}…
哇我太菜啦555555 不妨钦定我们需要访问的点集为$S$,在$S$已知的情况下,我们令$f(x) $表示从$x$走到点集$S$中任意一点的期望步数. 若$x∈S$,则显然$f(x)=0$,否则$f[x]=\frac{1}{d[x]}\sum f[ch[x]]+1$.其中$d[x]$表示与$x$相连的节点个数,$ch[x]$为与$x$相连的节点. 然后就列出了$n$条式子,显然是一个$n$元一次方程,可以考虑用高斯消元去求解,这样时间复杂度是$O(n^32^{n})$,只能拿$60$分(然而我考…