Prepare the data 数据来自UCIhttp://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening,一个信a用卡的数据,具体各项变量名以及变量名代表的含义不明(应该是出于保护隐私的目的),本文会用logit,GBM,knn,xgboost来对数据进行分类预测,对比准确率 预计的准确率应该是: xgboost > GBM > logit > knn Download the data datas
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Keras 非线性回归 import keras import numpy as np import matplotlib.pyplot as plt #Sequential按序列构成的模型 from keras.models import Sequential #Dense全连接层 from keras.layers
Keras实践:实现非线性回归 代码 import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import keras import numpy as np import matplotlib.pyplot as plt #顺序模型 from keras.models import Sequential #全连接层 from keras.layers import Dense from keras.optimizers
关键词: 梯度下降:就是让数据顺着梯度最大的方向,也就是函数导数最大的放下下降,使其快速的接近结果. Cost函数等公式太长,不在这打了.网上多得是. 这个非线性回归说白了就是缩小版的神经网络. python实现: import numpy as np import random def graientDescent(x,y,theta,alpha,m,numIterations):#梯度下降算法 xTrain =x.transpose() for i in range(0,numIterati
Version info: Code for this page was tested in SPSS 20. Logistic regression, also called a logit model, is used to model dichotomous outcome variables. In the logit model the log odds of the outcome is modeled as a linear combination of the predictor
构建基本网络实现非线性回归 1.加载显示数据集 import tensorflow as tf import numpy as np import keras from keras.layers import * from keras.models import Sequential import matplotlib.pyplot as plt from keras.optimizers import SGD x_data = np.linspace(-0.5,0.5,200) noise =