CS184.1X 计算机图形学导论 罗德里格斯公式推导
罗德里格斯公式推导

图1(复制自wiki)
按照教程里,以图1为例子,设k为旋转轴,v为原始向量。 v以k为旋转轴旋转,旋转角度为θ,旋转后的向量为vrot。
首先我们对v进行分解,分解成一个平行于k和垂直于K的向量,分别为v∥和v⊥。
则v∥=<k,v>k (因为这里设了k是单位向量,所以|k|=1)
v⊥=v-v∥
为了方便研究旋转后的向量,我们以k和v的叉乘w以及v∥和v⊥建立坐标系。
w=kXv
设vrot的分量为v⊥',和v∥',显而易见的v∥'=v∥
而v⊥'可以由v⊥和w来表示。
由于v⊥'是vrot的分量,因此显而易见的|v⊥'|=|v⊥|
设k和v之间的夹角为α
w=kXv,即|w|=|k||v|sinα
从图中我们根据三角形公式,也可以得出|v⊥|=|v|sinα,而|k|=1,所以|v⊥|=|w|
因此,v⊥'=wsinθ+v⊥cosθ
vrot=wsinθ+v⊥cosθ+v∥
w=kXv
v∥=<k,v>k
v⊥=v-v∥
<k,v>k=kTvk(根据点乘转换成矩阵)= kkTv(可验证)
kXv=K*v (设K*为k的对偶矩阵)(根据叉乘转矩阵的方法)
vrot=K*vsinθ+(v- kkTv)cosθ+kkTv
=(K*sinθ+Icosθ+kkT(1-cosθ))v
最后得出旋转公式R=K*sinθ+Icosθ+kkT(1-cosθ)
CS184.1X 计算机图形学导论 罗德里格斯公式推导的更多相关文章
- CS184.1X 计算机图形学导论(第五讲)
一.观察:正交投影 1.特性:保持平行线在投影后仍然是平行的 2.一个长方体,对处在只有深度不同的位置上的同一物体来说,它的大小不会改变. 3.透视投影:平行线在远处会相交(例如铁轨) 4.glOrt ...
- CS184.1X 计算机图形学导论(第三讲)
第一单元(介绍关于变换的数学知识) :基本二维变换 模型坐标系,世界坐标系 1.缩放 Scale(规模,比例) Sx表示在x方向上放大的倍数,Sy表示在y方向上放大的倍数,因此X坐标乘以Sx,Y坐标乘 ...
- CS184.1X 计算机图形学导论L3V2和L3V3(部分)
组合变换 连接矩阵的优点是可以使用这些矩阵单独操作. 多个变换依然是一个矩阵. 连接矩阵不可交换,因为矩阵乘法不具有交换性. X3=RX2 X2=SX1 X3=R(SX1)=(RS)X1 X3≠SRX ...
- CS184.1X 计算机图形学导论 第3讲L3V1
二维空间的变换 L3V1这一课主要讲了二维空间的变换,包括平移.错切和旋转. 缩放 缩放矩阵 使用矩阵的乘法来完成缩放 缩放矩阵是一个对角矩阵,对角线上的值对应缩放倍数 错切(shear) 错切可以将 ...
- CS184.1X 计算机图形学导论 作业0
1.框架下载 在网站上下载了VS2012版本的作业0的框架,由于我的电脑上的VS是2017版的,根据提示安装好C++的版本,并框架的解决方案 重定解决方案目标为2017版本. 点击运行,可以出来界面. ...
- CS184.1X 计算机图形学导论 HomeWork1
最容易填写的函数就是left.输入为旋转的角度,当前的eye与up这两个三维向量 void Transform::left(float degrees, vec3& eye, vec3& ...
- CS184.1X 计算机图形学导论(第四讲)
一.齐次变换 1.平移变换 变换矩阵不能包含X,Y,Z等坐标变量 如果x坐标向右平移了5个单位长度,则x~=x+5.在变换矩阵中表示的时候添加一个w坐标变量.通过加入一个w坐标,可以实现平移变换 1& ...
- 分享:计算机图形学期末作业!!利用WebGL的第三方库three.js写一个简单的网页版“我的世界小游戏”
这几天一直在忙着期末考试,所以一直没有更新我的博客,今天刚把我的期末作业完成了,心情澎湃,所以晚上不管怎么样,我也要写一篇博客纪念一下我上课都没有听,还是通过强大的度娘完成了我的作业的经历.(当然作业 ...
- 计算机图形学 - 图形变换(opengl版)
作业题目: 图形变换:实现一个图形绕任意直线旋转的程序. 要求:把一个三维图形绕任意一条直线旋转,需要有初始图形,和旋转后的图形,最好也可以实时控制旋转. 最少要做出绕z轴旋转. 原理:http:// ...
随机推荐
- 2018web前端面试总结
从今年3月份开始面试笔试找实习找校招到现在也半年多了,拿到了不少offer,也有了自己的一点心得体会,这里写出来分享一下,拙见勿喷. 注意一下,以下的观点仅代表我个人的体会不代表任何人任何组织和任何公 ...
- Microsoft Office 365的安装
一.安装准备 本教程中需要用到的工具包括:最新版的Office离线包,虚拟光驱软件,离线Kms激活工具, 下载地址:百度网盘 链接: https://pan.baidu.com/s/1sQk7zE40 ...
- CentOS7 小技巧总结
1.CentOS7 解决无法使用tab自动补全 原因:CentOS在最小化安装时,没有安装自动补全的包,需要手动安装. yum -y install bash-completion 安装好后,重新登陆 ...
- Linux初识之Centos7中terminal光标位置偏移问题的解决
新安装的centos7打开terminal发现光标位置向右偏移,使用起来影响感官,经查询后找到类似情况并顺利解决问题,特记录解决过程以作参考. 1.未解决时光标向右偏移显示: 2.打开设置(Setti ...
- Linux下一键安装包的基础上安装SVN及实现nginx web同步更新
Linux下一键安装包的基础上安装SVN及实现nginx web同步更新 一.安装 1.查看是否安装cvs rpm -qa | grep subversion 2.安装 yum install sub ...
- php下api接口的并发http请求
php下api接口的并发http请求 ,提高app一个页面请求多个api接口,页面加载慢的问题: func_helper.php/** * 并发http请求 * * [ * 'url' //请求地址 ...
- JDK 13 都已经发布了,Java 8 依然是最爱
在 JDK 版本的世界里,从来都是 Oracle 发他的新版本,我们继续用我们的老版本.三年之前用 JDK 7,后来终于升级到了 JDK 8.自从升级了没多久,JDK 就开始了半年发一个新版本的节奏, ...
- JS中3种风格的For循环有什么异同?
转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者.原文出处:https://blog.bitsrc.io/3-flavors-of-the-for-loop-i ...
- asp.net core IdentityServer4 实现 implicit(隐式许可)实现第三方登录
前言 OAuth 2.0默认四种授权模式(GrantType) 授权码模式(authorization_code) 简化模式(implicit) 密码模式(resource owner passwor ...
- jmeter 分布式疑难杂症 待完善
完善中....(可能不会完善了) 前景:在window调度机上配置好了jmeter相关的 jmx文件,因需搞分布式所以弄了几台linux. 但是jmx文件请求包含有bean shell脚本,需导入ja ...