LOJ #10131 「一本通 4.4 例 2」暗的连锁
给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 .
$n \le 10^5 , m \le 2*10^5 $ , 保证答案在 \(int\) 范围内.
对于每条非树边 , 覆盖 \(x\) 到 \(LCA\) 和 \(y\)到 \(LCA\) 的边 , 即差分算出每个点和父亲的连边被覆盖了多少次 .
被覆盖 \(0\) 次的边可以和 \(m\) 条非树边搭配 , 被覆盖 \(1\) 次的边可以和唯一的非树边搭配 , \(2\) 次以上的不能产生贡献 .
时间复杂度 \(O(n+m)\)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
#define log2 LLLLog2
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
}
const int N = 3e5 + 5;
const int M = 6e5 + 5;
const int logN = 20;
struct Edge{
int v,w,nxt;
}e[M];
int first[N],Ecnt=0;
inline void Add_edge(int u,int v,int w=0){
e[++Ecnt]=(Edge){v,w,first[u]};
first[u]=Ecnt;
}
int fa[N][logN], dep[N], tag[N], log2[N];
int n, m, ans;
inline void dfs1(int u, int pre){
fa[u][0] = pre, dep[u] = dep[pre] + 1;
for(int i = 1; fa[u][i - 1]; ++i){
fa[u][i] = fa[fa[u][i - 1]][i - 1];
}
for(int i = first[u]; i; i = e[i].nxt){
int v = e[i].v;
if(v != pre) dfs1(v, u);
}
}
inline int LCA(int x, int y){
if(dep[x] < dep[y]) swap(x, y);
for(int i = log2[dep[x] - dep[y]]; i >= 0; --i){
if(dep[fa[x][i]] >= dep[y]){
x = fa[x][i];
}
}
if(x == y) return x;
for(int i = log2[dep[x]]; i >= 0; --i){
if(fa[x][i] != fa[y][i]){
x = fa[x][i], y = fa[y][i];
}
}
return fa[x][0];
}
inline void dfs2(int u, int pre){
for(int i = first[u]; i; i = e[i].nxt){
int v = e[i].v;
if(v == pre) continue;
dfs2(v, u);
tag[u] += tag[v];
}
}
int main(){
n = read(), m = read();
log2[0] = -1;
for(int i = 1; i <= n; ++i) log2[i] = log2[i >> 1] + 1;
for(int i = 1; i < n; ++i){
int x = read(), y = read();
Add_edge(x, y);
Add_edge(y, x);
}
dfs1(1, 0);
for(int i = 1; i <= m; ++i){
int x = read(), y = read(), p = LCA(x, y);
++tag[x], ++tag[y], tag[p] -= 2;
}
dfs2(1, 0);
for(int i = 2; i <= n; ++i){
if(tag[i] == 0) ans += m;
if(tag[i] == 1) ans += 1;
}
printf("%d\n", ans);
}
LOJ #10131 「一本通 4.4 例 2」暗的连锁的更多相关文章
- LOJ10131. 「一本通 4.4 例 2」暗的连锁【树上差分】
LINK solution 很简单的题 你就考虑实际上是对每一个边求出两端节点分别在两个子树里面的附加边的数量 然后这个值是0第二次随便切有m种方案,如果这个值是1第二次只有一种方案 如果这个值是2或 ...
- LOJ#10064. 「一本通 3.1 例 1」黑暗城堡
LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...
- Loj 10115 「一本通 4.1 例 3」校门外的树 (树状数组)
题目链接:https://loj.ac/problem/10115 题目描述 原题来自:Vijos P1448 校门外有很多树,学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的 ...
- LOJ#10065. 「一本通 3.1 例 2」北极通讯网络
题目链接:https://loj.ac/problem/10065 题目描述 原题来自:Waterloo University 2002 北极的某区域共有 nnn 座村庄,每座村庄的坐标用一对整数 ( ...
- LOJ#10106. 「一本通 3.7 例 2」单词游戏
题目链接:https://loj.ac/problem/10106 题目描述 来自 ICPC CERC 1999/2000,有改动. 有 NNN 个盘子,每个盘子上写着一个仅由小写字母组成的英文单词. ...
- LOJ #10132. 「一本通 4.4 例 3」异象石
题目地址 LOJ 题解 神仙思路.思路参考自<算法竞赛进阶指南>. 考虑维护dfs序中相邻两个石头的距离,那么每次?的答案就是sum/2(首尾算相邻) 然后维护一下拿个平衡树/set维护一 ...
- LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci
题目链接 题目大意 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$ $$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$ 求$T[n] ...
- LOJ 10138 -「一本通 4.5 例 1」树的统计
树链剖分模板题,详见这篇博客.
- LOJ 10155 - 「一本通 5.2 例 3」数字转换
前言 从现在开始,这个博客要写一些题解了.起初,开这个博客只是好玩一样,没事就写写CSS.JS,然后把博客前端搞成了现在这个样子.以前博客只是偶尔记录一些东西,刷题也从来不记录,最近受一些学长的影响, ...
随机推荐
- resize([[data],fn]) 当调整浏览器窗口的大小时,发生 resize 事件。
resize([[data],fn]) 概述 当调整浏览器窗口的大小时,发生 resize 事件. 参数 fnFunctionV1.0 在每一个匹配元素的resize事件中绑定的处理函数.直线电机 ...
- sql server 知识整理 isnull函数()
exec sp_helptext ProPrecode_matcode_uf exec sp_helptext 存储过程名字 isnull 函数() SQL Serve中的isnull()函数: is ...
- decompiler
.NET Reflector trial version http://www.red-gate.com/products/dotnet-development/reflector/ 破解版本 .N ...
- setsockopt函数
#include <sys/socket.h> int setsockopt( int socket, int level, int option_name, ...
- 【csp模拟赛6】树上统计-启发式合并,线段树合并
30%:暴力 40%:枚举L,R从L~n枚举,R每增大一个,更新需要的边(bfs实现)60%:枚举每条边, 计算每条边的贡献另外20%的数据:枚举每条边,计算每条边的贡献100%:对于每一条边统计 有 ...
- .net Core使用 MongoDB
1.安装mogodb windows版本下载地址:https://www.mongodb.com/download-center/v2/community 查看mongod.conf文件,找到绑定的I ...
- P1106 删数问题 自己码风好菜
一个人的码风好坏究竟会影响多少
- 【做题记录】AtCoder AGC做题记录
做一下AtCoder的AGC锻炼一下思维吧 目前已做题数: 75 总共题数: 239 每一场比赛后面的字母是做完的题,括号里是写完题解的题 AGC001: ABCDEF (DEF) AGC002: A ...
- Geos判断点是否在多边形内
使用的geo版本是3.5.1 #include <iostream> #include "geos.h" using namespace std; GeometryFa ...
- jQuery源代码学习之十——动画Animate
一.Animate模块的代码结构 // 定义了一些变量 tweeners = {}; function createFxNow() {} function createTween() {} funct ...