from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
import numpy as np filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V")
summary = dataFile.describe()
dataFileNormalized = dataFile.iloc[:,1:6]
for i in range(1,6):
mean = summary.iloc[1, i]
sd = summary.iloc[2, i]
dataFileNormalized.iloc[:,(i-1)] = (dataFileNormalized.iloc[:,(i-1)] - mean) / sd
array = dataFileNormalized.values
print(np.shape(array))
boxplot(array)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
filePath = ("c://dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") summary = dataFile.describe()
minRings = -1
maxRings = 99
nrows = 10
for i in range(nrows):
dataRow = dataFile.iloc[i,1:10]
labelColor = (dataFile.iloc[i,10] - minRings) / (maxRings - minRings)
dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

import numpy as np
from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr())
plot.pcolor(corMat)
plot.show()
print(np.shape(corMat))
print(corMat)

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath)
summary = dataFile.describe()
print(summary) array = dataFile.iloc[:,1:13].values
boxplot(array)
plot.xlabel("month")
plot.ylabel("rain")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath) minRings = -1
maxRings = 99
nrows = 12
for i in range(nrows):
dataRow = dataFile.iloc[i,1:13]
labelColor = (dataFile.iloc[i,12] - minRings) / (maxRings - minRings)
dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath) corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr()) plot.pcolor(corMat)
plot.show()

吴裕雄 python深度学习与实践(6)的更多相关文章

  1. 吴裕雄 python深度学习与实践(18)

    # coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...

  2. 吴裕雄 python深度学习与实践(17)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...

  3. 吴裕雄 python深度学习与实践(16)

    import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...

  4. 吴裕雄 python深度学习与实践(15)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...

  5. 吴裕雄 python深度学习与实践(14)

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...

  6. 吴裕雄 python深度学习与实践(13)

    import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...

  7. 吴裕雄 python深度学习与实践(12)

    import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...

  8. 吴裕雄 python深度学习与实践(11)

    import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...

  9. 吴裕雄 python深度学习与实践(10)

    import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...

  10. 吴裕雄 python深度学习与实践(9)

    import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...

随机推荐

  1. MongoDB 的安装以及使用

    MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案.MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数 ...

  2. CS229 2.深入梯度下降(Gradient Descent)算法

    1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainS ...

  3. Android最新版支付宝支付集成

    上次集成支付宝支付已经很久了,今天写东西用到了支付宝支付,就大致写一下流程: 去蚂蚁金服下载最新版的Android&IOS端SDK 全部文档 -- 资源下载 -- App支付客户端 下载后解压 ...

  4. HDU1848 Fibonacci again and again 博弈 SG函数

    题意:三堆石子,每次能拿走斐波那契数个石子,先取完石子胜,问先手胜还是后手胜  石子个数<=1000 多组数据 题目链接:http://acm.hdu.edu.cn/showproblem.ph ...

  5. position:absolute溢出处理

    今天在做布局的时候发现把table设置了position:absolute后 overflow居然不管用了,溢出的部分依然溢出. 百度后,才想起来... ... position后,元素已经和父元素不 ...

  6. linux问题集

    Too many authentication failures for root (code 2) 原因:服务器可能由于装了一下安全软件导致有时用ssh远程工具登陆不了,提示太多认证失败for ro ...

  7. CMD命令行合并多个txt文件到一个txt文件

    运行->输入CMD回车 输入: Copy G:\MyFolder\*.txt  G:\NewFolder\a.txt 回车即可 意思是将G:\MyFolder\下的所有txt文本内容复制到G:\ ...

  8. openx 添加新表和据库表和字段

    OpenX的版本是2.8.10.在数据表加完数据库之后,还不能读取和保存字段. OpenX使用scheme来 管理数据库表和字段, 修改数据库结构同时也要修改相关schema, 一个是etc/tabl ...

  9. django之setup()

    #django包的__init__.py包含setup函数def setup(): """ Configure the settings (this happens as ...

  10. 2018年1月21日--2月4日 NAS

    二十号去比赛时,与同事闲聊时说起家庭服务器,后来搜到nas(网络附着存储器),找到freenas,突然觉得很有用,手机拍了大量的照片视频,存储在电脑,已经换过几次硬盘了,对于这些珍贵的资料,万一硬盘坏 ...