from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
import numpy as np filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V")
summary = dataFile.describe()
dataFileNormalized = dataFile.iloc[:,1:6]
for i in range(1,6):
mean = summary.iloc[1, i]
sd = summary.iloc[2, i]
dataFileNormalized.iloc[:,(i-1)] = (dataFileNormalized.iloc[:,(i-1)] - mean) / sd
array = dataFileNormalized.values
print(np.shape(array))
boxplot(array)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
filePath = ("c://dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") summary = dataFile.describe()
minRings = -1
maxRings = 99
nrows = 10
for i in range(nrows):
dataRow = dataFile.iloc[i,1:10]
labelColor = (dataFile.iloc[i,10] - minRings) / (maxRings - minRings)
dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

import numpy as np
from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr())
plot.pcolor(corMat)
plot.show()
print(np.shape(corMat))
print(corMat)

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath)
summary = dataFile.describe()
print(summary) array = dataFile.iloc[:,1:13].values
boxplot(array)
plot.xlabel("month")
plot.ylabel("rain")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath) minRings = -1
maxRings = 99
nrows = 12
for i in range(nrows):
dataRow = dataFile.iloc[i,1:13]
labelColor = (dataFile.iloc[i,12] - minRings) / (maxRings - minRings)
dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath) corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr()) plot.pcolor(corMat)
plot.show()

吴裕雄 python深度学习与实践(6)的更多相关文章

  1. 吴裕雄 python深度学习与实践(18)

    # coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...

  2. 吴裕雄 python深度学习与实践(17)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...

  3. 吴裕雄 python深度学习与实践(16)

    import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...

  4. 吴裕雄 python深度学习与实践(15)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...

  5. 吴裕雄 python深度学习与实践(14)

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...

  6. 吴裕雄 python深度学习与实践(13)

    import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...

  7. 吴裕雄 python深度学习与实践(12)

    import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...

  8. 吴裕雄 python深度学习与实践(11)

    import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...

  9. 吴裕雄 python深度学习与实践(10)

    import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...

  10. 吴裕雄 python深度学习与实践(9)

    import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...

随机推荐

  1. vue打印html

    # vue打印功能 console.log(data.doPrint); // html字符串 let newContent =data.doPrint; let oldContent = docum ...

  2. solr如何让全词匹配结果在最前面

    在全文搜索中默认排序是按照匹配度权值score排序的,权值越大位置越靠前,那为什么有很多时候全词匹配反而不在最前面那,其实很简单因为全词匹配权值也就是100,但是还有很多权值大于100的排在了前面. ...

  3. vue-cli 项目搭建

    vue-cli 项目搭建 1.首先需要安装nodejs(安装省略). 2.用node安装vue-cli. npm install -g vue-cli   3.新建目录用来存放工程. 新建一个vue项 ...

  4. mocha测试接口类型及测试报告收集

    记录参考: 参考文档: 测试报告以及es6: http://www.ruanyifeng.com/blog/2015/12/a-mocha-tutorial-of-examples.html 测试接口 ...

  5. JVM总结-字节码

    在运行过程中,每当调用进入一个 Java 方法,Java 虚拟机会在当前线程的 Java 方法栈中生成一个栈帧,用以存放局部变量以及字节码的操作数.这个栈帧的大小是提前计算好的,而且 Java 虚拟机 ...

  6. JVM总结-虚拟机加载类

    从 class 文件到内存中的类,按先后顺序需要经过加载.链接以及初始化三大步骤.其中,链接过程中同样需要验证:而内存中的类没有经过初始化,同样不能使用.那么,是否所有的 Java 类都需要经过这几步 ...

  7. c# 后台AJAX

    public class BackA { #region 后台 AJAX public static string GetPage(string posturl) { Stream outstream ...

  8. android 开发 实现RecyclerView的列表单选功能

    实现思维: 1.首先在一行的xml布局中添加一个选中效果的icon图片,未选中的情况下INVISIBLE或者GONE 都可以,推荐使用INVISIBLE它会占用布局位置但是不显示,这样可以避免布局中其 ...

  9. python-GIL

    全局解释器锁GIL:在同一时刻仅有一个线程可被调度执行.对于单核环境,该实现简单高效.对于多线程的并发应用,一般通过多进程加协程充分发挥多核计算能力. 对于I/O密集型任务,线程发生阻塞时,会自动释放 ...

  10. 8.2.1.2-MySQL如何优化 WHERE 语句

    这一章节讨论能够在WHERE处理语句中使用的优化. 样例使用SELECT 语句, 但是同样适用于DELETE,UPDATE语句中的WHERE语句. 注意 因为MYSQL优化器在不断的发展,MySQL执 ...