from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
import numpy as np filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V")
summary = dataFile.describe()
dataFileNormalized = dataFile.iloc[:,1:6]
for i in range(1,6):
mean = summary.iloc[1, i]
sd = summary.iloc[2, i]
dataFileNormalized.iloc[:,(i-1)] = (dataFileNormalized.iloc[:,(i-1)] - mean) / sd
array = dataFileNormalized.values
print(np.shape(array))
boxplot(array)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
filePath = ("c://dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") summary = dataFile.describe()
minRings = -1
maxRings = 99
nrows = 10
for i in range(nrows):
dataRow = dataFile.iloc[i,1:10]
labelColor = (dataFile.iloc[i,10] - minRings) / (maxRings - minRings)
dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

import numpy as np
from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr())
plot.pcolor(corMat)
plot.show()
print(np.shape(corMat))
print(corMat)

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath)
summary = dataFile.describe()
print(summary) array = dataFile.iloc[:,1:13].values
boxplot(array)
plot.xlabel("month")
plot.ylabel("rain")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath) minRings = -1
maxRings = 99
nrows = 12
for i in range(nrows):
dataRow = dataFile.iloc[i,1:13]
labelColor = (dataFile.iloc[i,12] - minRings) / (maxRings - minRings)
dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath) corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr()) plot.pcolor(corMat)
plot.show()

吴裕雄 python深度学习与实践(6)的更多相关文章

  1. 吴裕雄 python深度学习与实践(18)

    # coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...

  2. 吴裕雄 python深度学习与实践(17)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...

  3. 吴裕雄 python深度学习与实践(16)

    import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...

  4. 吴裕雄 python深度学习与实践(15)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...

  5. 吴裕雄 python深度学习与实践(14)

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...

  6. 吴裕雄 python深度学习与实践(13)

    import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...

  7. 吴裕雄 python深度学习与实践(12)

    import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...

  8. 吴裕雄 python深度学习与实践(11)

    import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...

  9. 吴裕雄 python深度学习与实践(10)

    import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...

  10. 吴裕雄 python深度学习与实践(9)

    import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...

随机推荐

  1. vs code编辑器格式化react jsx插件

    vs code格式化jsx比较适合的插件是react-beautify: 格式化中遇到的问题是indent几格,这个问题的解决是你在space里设置几格这个插件就会自动格式化出几格.

  2. Java 6- Java 运算符

    计算机的最基本用途之一就是执行数学运算,作为一门计算机语言,Java也提供了一套丰富的运算符来操纵变量.我们可以把运算符分成以下几组: 算术运算符 关系运算符 位运算符 逻辑运算符 赋值运算符 其他运 ...

  3. CS229 6.8 Neurons Networks implements of PCA ZCA and whitening

    PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4 ...

  4. Android WebView清空缓存

    Android原生和H5混合开发,要求用户退出登录后清空H5所有的缓存: 1.清空Cookie CookieSyncManager.createInstance(context.getApplicat ...

  5. Guava实现 过滤文本,排序,转换内容,分组计数转换map 等等

    重要点 :看注释 从access.log中统计数据 对healthcheck.html的请求不计入统计 输出请求总量,以及GET和POST分别的总量 输出请求最频繁的10个接口及其次数,按次数降序 输 ...

  6. WPF c# 定时器

    //定时查询-定时器 DispatcherTimer dispatcherTimer = new DispatcherTimer(); dispatcherTimer.Tick += (s, e) = ...

  7. android 开发 写一个RecyclerView布局的聊天室,并且添加RecyclerView的点击事件

    实现思维顺序: 1.首先我们需要准备2张.9的png图片(一张图片为左边聊天泡泡,一个图片为右边的聊天泡泡),可以使用draw9patch.bat工具制作,任何图片导入到drawable中. 2.需要 ...

  8. 20165205 《Java程序设计》第一周学习总结

    20165205 2017-2018-2 <Java程序设计>第一周学习总结 教材学习内容总结 安装JDK1.8,Git(在虚拟机内) 了解Git的使用方法 学习了vim的使用方法(很难) ...

  9. mongodb的副本集|备份|恢复备份

    复制(副本集) 什么是复制 复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性,并可以保证数据的安全性 复制还允许从硬件故障和服务中断中恢复数据 为什么要复制 数据备份 数据灾 ...

  10. Robot Operating System (ROS)学习笔记3---键盘控制

    搭建环境:XMWare  Ubuntu14.04  ROS(indigo) 转载自古月居  转载连接:http://www.guyuehome.com/253 一.创建控制包 catkin_creat ...