Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。如果你胜,你第1次怎样取子?
 
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,且a<=b。a=b=0退出。
 
Output
输出也有若干行,如果最后你是败者,则为0,反之,输出1,并输出使你胜的你第1次取石子后剩下的两堆石子的数量x,y,x<=y。如果在任意的一堆中取走石子能胜同时在两堆中同时取走相同数量的石子也能胜,先输出取走相同数量的石子的情况.
 
Sample Input
1 2
5 8
4 7
2 2
0 0
 
Sample Output
0
1
4 7
3 5
0
1
0 0
1 2
 
惯用套路,b和a的差值来确定ak,判断是是否是奇异局势,
 
先输出两堆变化的,a > ak ,b肯定大于ak,这是两种都变化的情况。
剩下的就是输出之变化种的,a从小到大,分别有几种情况,
 
假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);
如果a = ak ,b > bk,那么,取走b  - bk个物体,即变为奇异局势;
如果 a = ak ,  b < bk ,则同时从两堆中拿走 ak - a(b - ak)个物体,变为奇异局势( a(b - ak) , a(b - ak) +  b - ak );
如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a - ak 即可;
如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b - aj 即可。
 
嗯,这是一个很明显的Wythoff Game,主要是理清怎么输出。
 
 
 #include<bits/stdc++.h>

 using namespace std;

 int main()
{
int a,b;
while(~scanf("%d%d",&a,&b) && (a||b))
{
int s = b-a;
int ak = s*(sqrt()+)/2.0;
if(a == ak)printf("0\n");
else
{
printf("1\n");
if(a > ak)printf("%d %d\n",ak,ak+s);
double num = (+sqrt())/;
for(int i=;;i++)
{
int x = i*num;
if(x > b)break;
if(a == x && b > a + i)printf("%d %d\n",x,x+i);
else if(a > x && b==x+i)printf("%d %d\n",x,x+i);
else if(a == x + i)printf("%d %d\n",x,x+i);
}
} }
}
 
 

HDU-2177 取(2堆)石子游戏 (威佐夫博奕)的更多相关文章

  1. hdu 2177 取(2堆)石子游戏(威佐夫博奕)

    题目链接:hdu 2177 这题不是普通的 Nim 博弈,我想它应该是另一种博弈吧,于是便推 sg 函数打了个 20*20 的表来看,为了方便看一些,我用颜色作了标记,打表代码如下: #include ...

  2. HDU 2177 取(2堆)石子游戏

    取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. HDU 2177 取(2堆)石子游戏 (威佐夫博弈)

    题目思路:威佐夫博弈: 当当前局面[a,b]为奇异局时直接输出0 否则: 1.若a==b,输出(0 0): 2.将a,b不停减一,看能否得到奇异局,若有则输出: 3.由于 ak=q*k(q为黄金分割数 ...

  4. HDU2177:取(2堆)石子游戏(威佐夫博弈)

    Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同 ...

  5. poj 1067 取石子游戏( 威佐夫博奕)

    题目:http://poj.org/problem?id=1067 题意:有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的 ...

  6. hdu 2177 取(2堆)石子游戏 博弈论

    由于要输出方案,变得复杂了.数据不是很大,首先打表,所有whthoff 的奇异局势. 然后直接判断是否为必胜局面. 如果必胜,首先判断能否直接同时相减得到.这里不需要遍历或者二分查找.由于两者同时减去 ...

  7. HDU 2176 取(m堆)石子游戏(Nim)

    取(m堆)石子游戏 题意: Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,1 ...

  8. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  9. HDU 2176 取(m堆)石子游戏 (尼姆博奕)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎 ...

随机推荐

  1. Confluence 6 使用 Apache 的 mod_jk

      在 Confluence 6 及其后续版本中,不能使用 mod_jk 来做代理.这是因为 Synchrony 服务导致的这个限制. Synchrony 在协同编辑的时候需要启动,同时还不能接受 A ...

  2. GitHub搭配使用Travis CI 进行自动构建服务

    Travis CI (Continuous Integration)持续集成服务 用处:自动监控软件仓库,可以在代码提交后立刻执行自动测试或构建 1.在Github自己的仓库根目录里添加.travis ...

  3. java Swing组件和事件处理

    1.常见的容器 JComponent是 Container 的子类,中间容器必须添加到底层容器中才能够发挥作用, JPanel 面板 :使用jPanel 创建一个面板,再通过添加组件到该面板上面,JP ...

  4. cf1025c 思维题

    /* bwwwbwwbw wwbwwwbwb 不管从哪里断开翻转.翻转后的串再整体翻转一定是2s的子串 */ #include<bits/stdc++.h> using namespace ...

  5. CentOS下将Python的版本升级为3.x

    本文主要介绍在Linux(CentOS)下将Python的版本升级为3.x的方法 众所周知,在2020年python官方将不再支持2.7版本的python,所以使用3.x版本的python是必要的,但 ...

  6. 浏览器URL中 encodeURIComponent()加密和decodeURIComponent()解码

    encodeURIComponent()加密 定义和用法 encodeURIComponent() 函数可把字符串作为 URI 组件进行编码. 语法 encodeURIComponent(URIstr ...

  7. 卸载列表信息——Uninstall注册表

    今天用InstallShield打包了一个安装程序,安装顺利完成了,但是当我去控制面板准备卸载时,发现我的程序没有详细的信息,正常的软件信息如下图: 而我的程序没有发布者,大小和版本,也没有图标,于是 ...

  8. MongoDB数据库备份与还原、单表的导入导出

    -------------------MongoDB备份与恢复------------------- 1.MongoDB数据库备份     1.语法:         mongodump -h dbh ...

  9. 20165206 2017-2018-2 《Java程序设计》第6周学习总结

    20165206 2017-2018-2 <Java程序设计>第6周学习总结 教材学习内容总结 String类:可以被直接使用,不可以有子类. String对象:可以使用String类声明 ...

  10. Python数据分析几个比较常用的方法

    1,表头或是excel的索引如果是中文的话,输出会出错 ​​解决方法:python的版本问题!换成python3就自动解决了!当然也有其他的方法,这里就不再深究 2,如果有很多列,如何输出指定的列? ...