吴裕雄 python 机器学习——支持向量机线性回归SVR模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm
from sklearn.model_selection import train_test_split def load_data_regression():
'''
加载用于回归问题的数据集
'''
diabetes = datasets.load_diabetes() #使用 scikit-learn 自带的一个糖尿病病人的数据集
# 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #支持向量机线性回归SVR模型
def test_LinearSVR(*data):
X_train,X_test,y_train,y_test=data
regr=svm.LinearSVR()
regr.fit(X_train,y_train)
print('Coefficients:%s, intercept %s'%(regr.coef_,regr.intercept_))
print('Score: %.2f' % regr.score(X_test, y_test)) # 生成用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data_regression()
# 调用 test_LinearSVR
test_LinearSVR(X_train,X_test,y_train,y_test)

def test_LinearSVR_loss(*data):
'''
测试 LinearSVR 的预测性能随不同损失函数的影响
'''
X_train,X_test,y_train,y_test=data
losses=['epsilon_insensitive','squared_epsilon_insensitive']
for loss in losses:
regr=svm.LinearSVR(loss=loss)
regr.fit(X_train,y_train)
print("loss:%s"%loss)
print('Coefficients:%s, intercept %s'%(regr.coef_,regr.intercept_))
print('Score: %.2f' % regr.score(X_test, y_test)) # 调用 test_LinearSVR_loss
test_LinearSVR_loss(X_train,X_test,y_train,y_test)

def test_LinearSVR_epsilon(*data):
'''
测试 LinearSVR 的预测性能随 epsilon 参数的影响
'''
X_train,X_test,y_train,y_test=data
epsilons=np.logspace(-2,2)
train_scores=[]
test_scores=[]
for epsilon in epsilons:
regr=svm.LinearSVR(epsilon=epsilon,loss='squared_epsilon_insensitive')
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train, y_train))
test_scores.append(regr.score(X_test, y_test))
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(epsilons,train_scores,label="Training score ",marker='+' )
ax.plot(epsilons,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "LinearSVR_epsilon ")
ax.set_xscale("log")
ax.set_xlabel(r"$\epsilon$")
ax.set_ylabel("score")
ax.set_ylim(-1,1.05)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_LinearSVR_epsilon
test_LinearSVR_epsilon(X_train,X_test,y_train,y_test)

def test_LinearSVR_C(*data):
'''
测试 LinearSVR 的预测性能随 C 参数的影响
'''
X_train,X_test,y_train,y_test=data
Cs=np.logspace(-1,2)
train_scores=[]
test_scores=[]
for C in Cs:
regr=svm.LinearSVR(epsilon=0.1,loss='squared_epsilon_insensitive',C=C)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train, y_train))
test_scores.append(regr.score(X_test, y_test))
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(Cs,train_scores,label="Training score ",marker='+' )
ax.plot(Cs,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "LinearSVR_C ")
ax.set_xscale("log")
ax.set_xlabel(r"C")
ax.set_ylabel("score")
ax.set_ylim(-1,1.05)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_LinearSVR_C
test_LinearSVR_C(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——支持向量机线性回归SVR模型的更多相关文章
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——密度聚类DBSCAN模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——半监督学习LabelSpreading模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- 吴裕雄 python 机器学习——线性回归模型
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...
随机推荐
- PM2的参数配置
https://github.com/jawil/blog/issues/7 配置项: name 应用进程名称:script 启动脚本路径:cwd 应用启动的路径,关于script与cwd的区别 ...
- 如何在K3查找BOS单据在哪个子系统中
select FFunctionID,* from ICClassType where FName_CHS like '%采购订单%'select FSubSysID,* from t_DataFlo ...
- Python 之路Day13
匿名函数 一行函数 lambda == def -- 关键字 lambda x:x x 是普通函数的形参(位置,关键字……)可以不接收参数,可以不写 :x 是普通函数的函数值(只能返回一个数据类型), ...
- flask入门(三)
表单 request.form 能获取POST 请求中提交的表单数据.但是这样不太安全,容易受到恶意攻击.对此,flask有一个flask-wtf扩展,用于避免这一情况 在虚拟环境下用pip inst ...
- vue学习指南:第十四篇(详细) - Vue的 路由 第四篇 ( 路由的导航守卫 )
导航守卫 一.全局导航守卫 1. 全局导航守卫,把方法给 router,只要路由发生改变跳转都会触发这个函数 2. 每个路由 都有一个 meta 3. 全局导航守卫分两种: 1. 全局前置导航守卫:路 ...
- AcWing 1010. 拦截导弹
//贪心加dp #include<iostream> using namespace std ; ; int n; int q[N]; int f[N]; int g[N];//存每个序列 ...
- EF CodeFirst 之 Fluent API
如何访问Fluent API: 在自定义上下文类中重写OnModelCreating方法,在方法内调用. 注:用法基本一样,配置类中的this就相当于modelBuilder.Entity<Pe ...
- [BJOI2012]连连看
Description Luogu4134 Solution \(l,r \le 1000\),暴力枚举是否能匹配.这是一个选匹配的问题,所以直接网络流,原图不一定是二分图咋办?拆点啊!然后直接做就行 ...
- Mybaits的中的对象映射(包含仅有基本数据类型的属性的和对象类型的属性的)
转:https://blog.csdn.net/cjt20100/article/details/46547617. 1 constructor – 用来将结果反射给一个实例化好的类的构造器 a ...
- Windows7自定义主题
一.破解主题限制 Windows系统默认只能允许用户使用系统自带主题(非壁纸),即使用户安装了第三方主题,Windows也会限制很多地方,导致第三方主题用起来怪怪的. 故此,想要一个可以自定义主题的W ...