[5] 柱台(Cylinder)图形的生成算法
顶点数据的生成
bool YfBuildCylinderVertices
(
Yreal topRadius,
Yreal bottomRadius,
Yreal height,
Yuint slices,
YeOriginPose originPose,
Yuint vertexStriding,
Yuint vertexPos,
void* pVerticesBuffer
)
{
if (slices < || !pVerticesBuffer)
{
return false;
} Yuint numVertices = slices * + ; // 顶点赋值
char* vertexPtr = (char*)pVerticesBuffer + vertexPos;
YsVector3* curVertexPtr = NULL;
Yuint nOffset = ; Yreal originOffsetY = 0.0f;
if (originPose == YE_ORIGIN_POSE_TOP)
{
originOffsetY = -height;
}
else if (originPose == YE_ORIGIN_POSE_CENTER)
{
originOffsetY = -height * 0.5f;
} // 柱顶顶点赋值
{
nOffset = ;
curVertexPtr = (YsVector3*)(vertexPtr + nOffset);
curVertexPtr->x = 0.0f;
curVertexPtr->y = height + originOffsetY;
curVertexPtr->z = 0.0f;
} // 柱底顶点赋值
{
nOffset = (numVertices - ) * vertexStriding;
curVertexPtr = (YsVector3*)(vertexPtr + nOffset);
curVertexPtr->x = 0.0f;
curVertexPtr->y = originOffsetY;
curVertexPtr->z = 0.0f;
} Yreal angleXZ;
Yreal posX, posZ;
for (Yuint i = ; i < slices; i++)
{
angleXZ = YD_REAL_TWAIN_PI * i / slices;
posX = yf_sin(angleXZ);
posZ = yf_cos(angleXZ); // 上顶点
{
nOffset = (i + ) * vertexStriding;
curVertexPtr = (YsVector3*)(vertexPtr + nOffset);
curVertexPtr->x = topRadius * posX;
curVertexPtr->y = height + originOffsetY;
curVertexPtr->z = topRadius * posZ;
} // 下顶点
{
nOffset = (i + + slices) * vertexStriding;
curVertexPtr = (YsVector3*)(vertexPtr + nOffset);
curVertexPtr->x = bottomRadius * posX;
curVertexPtr->y = originOffsetY;
curVertexPtr->z = bottomRadius * posZ;
}
} return true;
}
三角形索引数据的生成
bool YfBuildCylinderTriIndices
(
Yuint slices,
YeIndexType indexType,
Yuint indexStriding,
Yuint indexPos,
void* pTriIndicesBuffer
)
{
if (slices < || !pTriIndicesBuffer)
{
return false;
} Yuint numVertices = slices * + ;
Yuint numTriangles = slices * ;
if (indexType == YE_INDEX_16_BIT &&
numVertices > YD_MAX_UNSIGNED_INT16)
{
return false;
} // 索引赋值
char* indexPtr = (char*)pTriIndicesBuffer + indexPos;
Yuint nOffset = ;
if (indexType == YE_INDEX_16_BIT)
{
YsTriIndex16* triIndexPtr = NULL;
for (Yuint i= ; i < slices; i++)
{
nOffset = (i * ) * indexStriding;
triIndexPtr = (YsTriIndex16*)(indexPtr + nOffset);
triIndexPtr->index0 = ;
triIndexPtr->index1 = + i;
triIndexPtr->index2 = + (i + )%slices; nOffset += indexStriding;
triIndexPtr = (YsTriIndex16*)(indexPtr + nOffset);
triIndexPtr->index0 = numVertices - ;
triIndexPtr->index1 = + slices + (i + )%slices;
triIndexPtr->index2 = + slices + i; nOffset += indexStriding;
triIndexPtr = (YsTriIndex16*)(indexPtr + nOffset);
triIndexPtr->index0 = + i;
triIndexPtr->index1 = + slices + i;
triIndexPtr->index2 = + (i + )%slices; nOffset += indexStriding;
triIndexPtr = (YsTriIndex16*)(indexPtr + nOffset);
triIndexPtr->index0 = + (i + )%slices;
triIndexPtr->index1 = + slices + i;
triIndexPtr->index2 = + slices + (i + )%slices;
}
}
else
{
YsTriIndex32* triIndexPtr = NULL;
for (Yuint i= ; i < slices; i++)
{
nOffset = (i * ) * indexStriding;
triIndexPtr = (YsTriIndex32*)(indexPtr + nOffset);
triIndexPtr->index0 = ;
triIndexPtr->index1 = + i;
triIndexPtr->index2 = + (i + )%slices; nOffset += indexStriding;
triIndexPtr = (YsTriIndex32*)(indexPtr + nOffset);
triIndexPtr->index0 = numVertices - ;
triIndexPtr->index1 = + slices + (i + )%slices;
triIndexPtr->index2 = + slices + i; nOffset += indexStriding;
triIndexPtr = (YsTriIndex32*)(indexPtr + nOffset);
triIndexPtr->index0 = + i;
triIndexPtr->index1 = + slices + i;
triIndexPtr->index2 = + (i + )%slices; nOffset += indexStriding;
triIndexPtr = (YsTriIndex32*)(indexPtr + nOffset);
triIndexPtr->index0 = + (i + )%slices;
triIndexPtr->index1 = + slices + i;
triIndexPtr->index2 = + slices + (i + )%slices;
}
} return true;
}
线框索引数据的生成
bool YfBuildCylinderWireIndices
(
Yuint slices,
YeIndexType indexType,
Yuint indexStriding,
Yuint indexPos,
void* pWireIndicesBuffer
)
{
if (slices < || !pWireIndicesBuffer)
{
return false;
} Yuint numVertices = slices * + ;
Yuint numLines = slices * ;
if (indexType == YE_INDEX_16_BIT &&
numVertices > YD_MAX_UNSIGNED_INT16)
{
return false;
} // 索引赋值
char* indexPtr = (char*)pWireIndicesBuffer + indexPos;
Yuint nOffset = ;
if (indexType == YE_INDEX_16_BIT)
{
YsLineIndex16* lineIndexPtr = NULL;
for (Yuint i= ; i < slices; i++)
{
nOffset = (i * ) * indexStriding;
lineIndexPtr = (YsLineIndex16*)(indexPtr + nOffset);
lineIndexPtr->index0 = ;
lineIndexPtr->index1 = + i; nOffset += indexStriding;
lineIndexPtr = (YsLineIndex16*)(indexPtr + nOffset);
lineIndexPtr->index0 = + i;
lineIndexPtr->index1 = + (i + )%slices; nOffset += indexStriding;
lineIndexPtr = (YsLineIndex16*)(indexPtr + nOffset);
lineIndexPtr->index0 = + i;
lineIndexPtr->index1 = + slices + i; nOffset += indexStriding;
lineIndexPtr = (YsLineIndex16*)(indexPtr + nOffset);
lineIndexPtr->index0 = + slices + i;
lineIndexPtr->index1 = + slices + (i + )%slices; nOffset += indexStriding;
lineIndexPtr = (YsLineIndex16*)(indexPtr + nOffset);
lineIndexPtr->index0 = numVertices - ;
lineIndexPtr->index1 = + slices + i;
}
}
else
{
YsLineIndex32* lineIndexPtr = NULL;
for (Yuint i= ; i < slices; i++)
{
nOffset = (i * ) * indexStriding;
lineIndexPtr = (YsLineIndex32*)(indexPtr + nOffset);
lineIndexPtr->index0 = ;
lineIndexPtr->index1 = + i; nOffset += indexStriding;
lineIndexPtr = (YsLineIndex32*)(indexPtr + nOffset);
lineIndexPtr->index0 = + i;
lineIndexPtr->index1 = + (i + )%slices; nOffset += indexStriding;
lineIndexPtr = (YsLineIndex32*)(indexPtr + nOffset);
lineIndexPtr->index0 = + i;
lineIndexPtr->index1 = + slices + i; nOffset += indexStriding;
lineIndexPtr = (YsLineIndex32*)(indexPtr + nOffset);
lineIndexPtr->index0 = + slices + i;
lineIndexPtr->index1 = + slices + (i + )%slices; nOffset += indexStriding;
lineIndexPtr = (YsLineIndex32*)(indexPtr + nOffset);
lineIndexPtr->index0 = numVertices - ;
lineIndexPtr->index1 = + slices + i;
}
} return true;
}
[5] 柱台(Cylinder)图形的生成算法的更多相关文章
- [20] 鼓状物(Drum)图形的生成算法
顶点数据的生成 bool YfBuildDrumVertices ( Yreal radius, Yreal assistRadius, Yuint slices, Yuint stacks, YeO ...
- [17] 楼梯(Stairs)图形的生成算法
感觉这图形怎么看怎么像搓衣板. 顶点数据的生成 bool YfBuildStairsVertices ( Yreal width, Yreal length, Yreal height, Yuint ...
- [19] 半球形(Hemisphere)图形的生成算法
顶点数据的生成 bool YfBuildHemisphereVertices ( Yreal radius, Yuint slices, Yuint stacks, YeOriginPose orig ...
- [18] 螺旋楼梯(Spiral Stairs)图形的生成算法
顶点数据的生成 bool YfBuildSpiralStairsVertices ( Yreal radius, Yreal assistRadius, Yreal height, Yuint sli ...
- [16] 螺旋面(Spire)图形的生成算法
顶点数据的生成 bool YfBuildSpireVertices ( Yreal radius, Yreal assistRadius, Yreal height, Yuint slices, Yu ...
- [15] 星星(Star)图形的生成算法
顶点数据的生成 bool YfBuildStarVertices ( Yreal radius, Yreal assistRadius, Yreal height, Yuint slices, YeO ...
- [14] 齿轮(Gear Wheel)图形的生成算法
顶点数据的生成 bool YfBuildGearwheelVertices ( Yreal radius, Yreal assistRadius, Yreal height, Yuint slices ...
- [13] 弧面(Arc)图形的生成算法
顶点数据的生成 bool YfBuildArcVertices ( Yreal radius, Yreal degree, Yreal height, Yuint slices, Yuint stac ...
- [12] 扇形体(Fan)图形的生成算法
顶点数据的生成 bool YfBuildFunVertices ( Yreal radius, Yreal degree, Yreal height, Yuint slices, YeOriginPo ...
随机推荐
- 【知了堂学习笔记】java 方法重载与重写的归纳
方法重载:Java的方法重载,就是在类中可以创建多个方法,它们可以有相同的名字,但必须具有不同的参数,即或者是参数的个数不同,或者是参数的类型不同.调用方法时通过传递给它们的不同个数和类型的参数来决定 ...
- UVa210 Concurrency Simulator (ACM/ICPC World Finals 1991) 双端队列
Programs executed concurrently on a uniprocessor system appear to be executed at the same time, but ...
- POJ 2260 Error Correction 模拟 贪心 简单题
Error Correction Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6825 Accepted: 4289 ...
- Xshell6和Xftp下载地址,rzsz的使用
官方下载地址:https://cdn.netsarang.net/98f59c09/Xshell-6.0.0076r_beta.exe https://cdn.netsarang.net/98f59c ...
- [BZOJ5338][TJOI2018]xor(可持久化Trie)
可持久化Trie模板题. 建两种可持久化Trie,每个点两棵,一棵对DFS求前缀和,一棵对祖先求前缀和. 或者树剖,不好写多少还多个log. #include<cstdio> #inclu ...
- Codeforces 1085G(1086E) Beautiful Matrix $dp$+树状数组
题意 定义一个\(n*n\)的矩阵是\(beautiful\)的,需要满足以下三个条件: 1.每一行是一个排列. 2.上下相邻的两个元素的值不同. 再定义两个矩阵的字典序大的矩阵大(从左往右从上到下一 ...
- Codeforces Round #288 (Div. 2) E. Arthur and Brackets 贪心
E. Arthur and Brackets time limit per test 2 seconds memory limit per test 128 megabytes input stand ...
- PAT甲级1131. Subway Map
PAT甲级1131. Subway Map 题意: 在大城市,地铁系统对访客总是看起来很复杂.给你一些感觉,下图显示了北京地铁的地图.现在你应该帮助人们掌握你的电脑技能!鉴于您的用户的起始位置,您的任 ...
- "Blessing of Dimisionality: High Dimensional Feature and Its Efficient Compression for Face Verification"学习笔记
这\(^{[1]}\)是一篇关于如何使用高维度特征在人脸验证中的文章,作者以主要LBP为例子,论述了高维特征和验证性能存在着正相关的关系,即人脸维度越高,验证的准确度就越高.由于那时候没有用DeepL ...
- MessasgePack:一个小巧高效的序列化方式
MessagePack是一种高效二进制序列化格式.可以在多种语言中进行快速数据交换,比如JSON格式等.它比Json更加小巧,更加高效,可以用于一些结构化数据存储 ,非常适合适用于消息总线,Memor ...