import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt def distort_color(image, color_ordering=0):
if color_ordering == 0:
image = tf.image.random_brightness(image, max_delta=32./255.)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
else:
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_brightness(image, max_delta=32./255.)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2) return tf.clip_by_value(image, 0.0, 1.0) def preprocess_for_train(image, height, width, bbox):
# 查看是否存在标注框。
if bbox is None:
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32) # 随机的截取图片中一个块。
bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(tf.shape(image), bounding_boxes=bbox, min_object_covered=0.4)
bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(tf.shape(image), bounding_boxes=bbox, min_object_covered=0.4)
distorted_image = tf.slice(image, bbox_begin, bbox_size) # 将随机截取的图片调整为神经网络输入层的大小。
distorted_image = tf.image.resize_images(distorted_image, [height, width], method=np.random.randint(4))
distorted_image = tf.image.random_flip_left_right(distorted_image)
distorted_image = distort_color(distorted_image, np.random.randint(2))
return distorted_image image_raw_data = tf.gfile.FastGFile("F:\\TensorFlowGoogle\\201806-github\\datasets\\cat.jpg", "rb").read() with tf.Session() as sess:
img_data = tf.image.decode_jpeg(image_raw_data)
boxes = tf.constant([[[0.05, 0.05, 0.9, 0.7], [0.35, 0.47, 0.5, 0.56]]])
for i in range(9):
result = preprocess_for_train(img_data, 299, 299, boxes)
plt.imshow(result.eval())
plt.show()

吴裕雄 python 神经网络——TensorFlow 图像预处理完整样例的更多相关文章

  1. TensorFlow图像预处理完整样例

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 以下TensorFlow程序完成了从图像片段截取,到图像大小调整再到图像翻转及色彩调整的整个图像预处理过程. #! ...

  2. 吴裕雄 python 神经网络——TensorFlow图片预处理

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读 ...

  3. 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  4. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  5. 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架

    import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...

  6. 吴裕雄 python 神经网络——TensorFlow 输入文件队列

    import tensorflow as tf def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64 ...

  7. 吴裕雄 python 神经网络——TensorFlow TFRecord样例程序

    import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...

  8. 吴裕雄 python 神经网络——TensorFlow 完整神经网络样例程序

    import tensorflow as tf from numpy.random import RandomState batch_size = 8 w1= tf.Variable(tf.rando ...

  9. 吴裕雄 python 神经网络——TensorFlow 数据集高层操作

    import tempfile import tensorflow as tf train_files = tf.train.match_filenames_once("E:\\output ...

随机推荐

  1. Java常量,变量,对象(字面量)在JVM内存中的存储位置

    Java常量,变量,对象(字面量)在JVM内存中的存储位置 2019-02-26 18:13:09 HD243608836 阅读数 540  收藏 更多 分类专栏: JAVA jvm   苦苦研究了快 ...

  2. 【网页浏览】怀旧xp画图网页版

    非常古老的WindowsXP画图工具 传送链接

  3. go基础_定时器

    每间隔5s打印一句hello // time_ticker package main import ( "fmt" "time" ) func main() { ...

  4. 每天进步一点点------Allegro PCB

    Allegro PCB 1.如何在allegro中取消花焊盘(十字焊盘) set up->design parameter ->shape->edit global dynamic ...

  5. python 更换数据源

    1.Win+R打开cmd输入%HOMEPATH%打开自己的HOMEPATH路径文件夹 2.在此路径下建立一个文件夹pip, 里边放一个文件pip.ini内容如下: [global] timeout = ...

  6. 浅谈Power Signoff

    Power Analysis是芯片设计实现中极重要的一环,因为它直接关系到芯片的性能和可靠性.Power Analysis 需要Timing Analysis 产生包含频率.transition 等时 ...

  7. 第二十八篇 玩转数据结构——堆(Heap)和有优先队列(Priority Queue)

          1.. 优先队列(Priority Queue) 优先队列与普通队列的区别:普通队列遵循先进先出的原则:优先队列的出队顺序与入队顺序无关,与优先级相关. 优先队列可以使用队列的接口,只是在 ...

  8. 吴裕雄 python 机器学习——数据预处理标准化MaxAbsScaler模型

    from sklearn.preprocessing import MaxAbsScaler #数据预处理标准化MaxAbsScaler模型 def test_MaxAbsScaler(): X=[[ ...

  9. C语言最重要的知识点(电子文档)

    总体上必须清楚的: 1)程序结构是三种:  顺序结构 .选择结构(分支结构).循环结构.  2)读程序都要从main()入口, 然后从最上面顺序往下读(碰到循环做循环,碰到选择做选择),有且只有一个m ...

  10. python闯关之路二(模块的应用)

    1.有如下字符串:n = "路飞学城"(编程题) - 将字符串转换成utf-8的字符编码的字节,再将转换的字节重新转换为utf-8的字符编码的字符串 - 将字符串转换成gbk的字符 ...