大数据-spark HA集群搭建
一、安装scala
我们安装的是scala-2.11.8 5台机器全部安装
下载需要的安装包,放到特定的目录下/opt/workspace/并进行解压
1、解压缩
[root@master1 ~]# cd /opt/workspace
[root@master1 workspace]#tar -zxvf scala-2.11..tar.gz
2、配置环境变量 /etc/profile文件中添加spark配置
[root@master1 ~]# vi /etc/profile
# Scala Config
export SCALA_HOME=/opt/software/scala-2.11.8
export PATH=$SCALA_HOME/bin:$PATH
[root@master1 ~]# source /etc/profile
3、启动scala
[root@master1 workspace]# vim /etc/profile
[root@master1 workspace]# scala -version
-bash: /opt/workspace/scala-2.11.8/bin/scala: 权限不够
[root@master1 workspace]# chmod +x /opt/workspace/scala-2.11.8/bin/scala
[root@master1 workspace]# scala -version
Scala code runner version 2.11.8 -- Copyright 2002-2016, LAMP/EPFL
[root@master1 workspace]# scala
Welcome to Scala 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_181).
Type in expressions for evaluation. Or try :help.
scala>

二、安装spark
1、下载spark对应版本
因为后期需要安装Hive,并且会运行hive on spark模式,为避免jar冲突,我们去掉了spark中的hive部分。
我们应用的是spark-2.3.0-bin-hadoop2-without-hive.tgz 自己编译的版本
可参考https://blog.csdn.net/sinat_25943197/article/details/81906060进行编译
2、文件解压
[root@master1 workspace]# tar -zxvf spark-2.3.0-bin-hadoop2-without-hive.tgz
3、配置文件 spark-env.sh slaves、/etc/profile
/etc/profile文件中添加
# Spark Config
export SPARK_HOME=/opt/workspace/spark-2.3.-bin-hadoop2-without-hive
export PATH=.:${JAVA_HOME}/bin:${SCALA_HOME}/bin:${MAVEN_HOME}/bin:$HADOOP_HOME/sbin:$HADOOP_HOME/bin:${SPARK_HOME}/bin:$SQOOP_HOME/bin:${ZK_HOME}/bin:$PATH
source /etc/profile
spark-env.sh.template重新命名为spark-env.sh文件、配置如下:
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# # This file is sourced when running various Spark programs.
# Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program # Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_JAVA_LIBRARY, to point to your libmesos.so if you use Mesos # Options read in YARN client/cluster mode
# - SPARK_CONF_DIR, Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - YARN_CONF_DIR, to point Spark towards YARN configuration files when you use YARN
# - SPARK_EXECUTOR_CORES, Number of cores for the executors (Default: ).
# - SPARK_EXECUTOR_MEMORY, Memory per Executor (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Driver (e.g. 1000M, 2G) (Default: 1G)
#export SPARK_MASTER_IP=master1
export SPARK_SSH_OPTS="-p 61333"
export SPARK_MASTER_PORT=
export SPARK_WORKER_INSTANCES=
export SCALA_HOME=/opt/workspace/scala-2.11.
export JAVA_HOME=/opt/workspace/jdk1.
export HADOOP_HOME=/opt/workspace/hadoop-2.9.
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export SPARK_HOME=/opt/workspace/spark-2.3.-bin-hadoop2-without-hive
export SPARK_CONF_DIR=$SPARK_HOME/conf
export SPARK_EXECUTOR_MEMORY=5120M
export SPARK_DIST_CLASSPATH=$(/opt/workspace/hadoop-2.9./bin/hadoop classpath)
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=master1:2181,master2:2181,slave1:2181,slave2:2181,slave3:2181 -Dspark.deploy.zookeeper.dir=/spark"
# Options for the daemons used in the standalone deploy mode
# - SPARK_MASTER_HOST, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_DAEMON_MEMORY, to allocate to the master, worker and history server themselves (default: 1g).
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_SHUFFLE_OPTS, to set config properties only for the external shuffle service (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_DAEMON_CLASSPATH, to set the classpath for all daemons
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers # Generic options for the daemons used in the standalone deploy mode
# - SPARK_CONF_DIR Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - SPARK_LOG_DIR Where log files are stored. (Default: ${SPARK_HOME}/logs)
# - SPARK_PID_DIR Where the pid file is stored. (Default: /tmp)
# - SPARK_IDENT_STRING A string representing this instance of spark. (Default: $USER)
# - SPARK_NICENESS The scheduling priority for daemons. (Default: )
# - SPARK_NO_DAEMONIZE Run the proposed command in the foreground. It will not output a PID file.
# Options for native BLAS, like Intel MKL, OpenBLAS, and so on.
# You might get better performance to enable these options if using native BLAS (see SPARK-).
# - MKL_NUM_THREADS= Disable multi-threading of Intel MKL
# - OPENBLAS_NUM_THREADS= Disable multi-threading of OpenBLAS
slaves.template文件重新命名为slaves、配置如下:
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# # A Spark Worker will be started on each of the machines listed below.
slave1
slave2
slave3
4、启动spark
[root@master1 workspace]# ./spark-2.3.0-bin-hadoop2-without-hive/sbin/start-all.sh
报错:默认是22端口,进行ssh端口修改

解决:在spark-env.sh中增加端口
export SPARK_SSH_OPTS="-p 61333"
重新启动spark

启动成功
5、手动启动备用master
[root@master2 workspace]# ./spark-2.3.0-bin-hadoop2-without-hive/sbin/start-master.sh




参考:https://blog.csdn.net/sinat_25943197/article/details/81906060
大数据-spark HA集群搭建的更多相关文章
- 大数据-HBase HA集群搭建
1.下载对应版本的Hbase,在我们搭建的集群环境中选用的是hbase-1.4.6 将下载完成的hbase压缩包放到对应的目录下,此处我们的目录为/opt/workspace/ 2.对已经有的压缩包进 ...
- 大数据-hadoop HA集群搭建
一.安装hadoop.HA及配置journalnode 实现namenode HA 实现resourcemanager HA namenode节点之间通过journalnode同步元数据 首先下载需要 ...
- 大数据学习——HADOOP集群搭建
4.1 HADOOP集群搭建 4.1.1集群简介 HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起 HDFS集群: 负责海量数据的存储,集群中的角色主 ...
- 大数据中Hadoop集群搭建与配置
前提环境是之前搭建的4台Linux虚拟机,详情参见 Linux集群搭建 该环境对应4台服务器,192.168.1.60.61.62.63,其中60为主机,其余为从机 软件版本选择: Java:JDK1 ...
- 大数据中HBase集群搭建与配置
hbase是分布式列式存储数据库,前提条件是需要搭建hadoop集群,需要Zookeeper集群提供znode锁机制,hadoop集群已经搭建,参考 Hadoop集群搭建 ,该文主要介绍Zookeep ...
- 大数据平台Hadoop集群搭建
一.概念 Hadoop是由java语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,其核心部件是HDFS与MapReduce.HDFS是一个分布式文件系统,类似mogilef ...
- 大数据学习——Storm集群搭建
安装storm之前要安装zookeeper 一.安装storm步骤 1.下载安装包 2.解压安装包 .tar.gz storm 3.修改配置文件 mv /root/apps/storm/conf/st ...
- 大数据中Linux集群搭建与配置
因测试需要,一共安装4台linux系统,在windows上用vm搭建. 对应4个IP为192.168.1.60.61.62.63,这里记录其中一台的搭建过程,其余的可以直接复制虚拟机,并修改相关配置即 ...
- 大数据学习——hadoop集群搭建2.X
1.准备Linux环境 1.0先将虚拟机的网络模式选为NAT 1.1修改主机名 vi /etc/sysconfig/network NETWORKING=yes HOSTNAME=itcast ### ...
随机推荐
- 一致性协议之Paxos算法
一.算法提出背景 Paxos算法需要解决的问题就是如何在一个可能发生诸如宕机或网络异常情况的分布式气筒中,快速且正确地在集群内部对某个数据的值达成一致,并且保证不论发生以上任何异常,都不会破坏整个系统 ...
- p4364 [九省联考2018]IIIDX
传送门 分析 我们先考虑如果所有数都不相同我们应该怎么办 我们可以直接贪心的在每个点放可行的最大权值 但是题目要求可以有相同的数 我们可以考虑每次让当前节点可发且尽量大的同时给兄弟节点留的数尽量大 我 ...
- 使用python进行汉语分词-乾颐堂
目前我常常使用的分词有结巴分词.NLPIR分词等等 最近是在使用结巴分词,稍微做一下推荐,还是蛮好用的. 一.结巴分词简介 利用结巴分词进行中文分词,基本实现原理有三: 基于Trie树结构实现高效的词 ...
- 用 python 实现各种排序算法-乾颐堂
总结了一下常见集中排序的算法 归并排序 归并排序也称合并排序,是分治法的典型应用.分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并. 具体的归并排序就是,将一组无序数按n/2递归分解成 ...
- [SoapUI] Loop a test with different sets of data
- Golang 之 Base62 编码
Base62 编码用62个可见字符来编码信息,也就是所谓的62进制,可用于缩短地址之类的.实现起来也很简单.当然,这个实现跟别人家的有可能不一样,反正自己能编能解就行. package main im ...
- Web测试项目计划与安排
本次Web测试项目实践的需求如下: 1 选中某一款产品(暂且选择博客园和CSDN进行横向比较),对被测产品进行评测: 2 进行用户调研: 3 对产品进行定量的评价: 4 对这个产品进行分析: 5 例会 ...
- MYSQL隐式类型转换
MYSQL隐式类型转换 关于官方文档中的理解大致是: 如果两个参数比较,有至少一个NULL,结果就是NULL,除了是用NULL<=>NULL 会返回1.不做类型转换 两个参数都是字符串,按 ...
- [GO]从键盘获取回复的客户端
package main import ( "net" "fmt" "os" ) func main() { //连接服务器 conn, e ...
- python操作mysql数据库系列-安装MySQLdb
一波三折,先是pip命令出现问题,然后各种方法尝试解决.然后是直接使用pip2命令安装报错,mysql-python库安装再次出现问题.于是使用国内镜像的方式去安装:pip2 install MySQ ...