import random
import numpy as np
np.random.randint(0,49,3)

##required libararies
import tensorflow as tf
#import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D

###MNIST dataset
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("./MNIST_data",one_hot=False)

## Establish train and test dataset
train_X,train_Y,test_X,test_Y=mnist.train.images,\
mnist.train.labels,mnist.test.images,mnist.test.labels

print(train_X.shape,train_Y.shape,test_X.shape,test_Y.shape)

train_Y[80]

3

import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(np.reshape(train_X[80],(28,28)),cmap='gray')
plt.show()

from keras.utils import np_utils #(utilities)
n_classes=10
train_y=keras.utils.to_categorical(train_Y,n_classes)
test_y=keras.utils.to_categorical(test_Y,n_classes)

print(train_y.shape,test_y.shape)

train_y[0]

np.argmax(train_y[0],axis=0)

7

Drop_prob=0.2
from keras.layers import Activation,Flatten
###设定模型为序贯模型###
model=Sequential()

###C O N V O L U T I O N L A Y E R 1###
model.add(Convolution2D(filters=32,kernel_size=(3,3),input_shape=(28,28,1),strides=(1, 1),padding='same'))
model.add(Activation("relu"))

###P O O L I N G L A Y E R 1###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Dropout(Drop_prob))

###C O N V O L U T I O N L A Y E R 2###
model.add(Convolution2D(filters=64,kernel_size=(3,3),input_shape=(14,14,32),strides=(1, 1),padding='same'))
model.add(Activation("relu"))

###P O O L I N G L A Y E R 2###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Dropout(Drop_prob))

###C O N V O L U T I O N L A Y E R 3###
model.add(Convolution2D(filters=128,kernel_size=(3,3),input_shape=(7,7,64),strides=(1, 1),padding='same'))
model.add(Activation("relu"))

###P O O L I N G L A Y E R 3###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten())
model.add(Dropout(Drop_prob))

###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=128,activation="relu"))
model.add(Dropout(0.5))

###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=512,activation="relu"))
model.add(Dropout(0.5))

###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=n_classes,activation="softmax"))
model.summary()

num_parameters

18496

from keras.optimizers import Adam
train_X=np.reshape(train_X,(train_X.shape[0],28,28,1))
##compile
model.compile(optimizer=Adam(),loss="categorical_crossentropy",metrics=['accuracy'])
##train
model.fit(train_X,train_y,epochs=100,batch_size=256,verbose=1)

evaluation=model.evaluate(test_X,test_y,batch_size=256,verbose=0)
print("loss:%.4f",evaluation[0],"acuraccy:%.4f",evaluation[1])

吴裕雄 python神经网络(6)的更多相关文章

  1. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  2. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  3. 吴裕雄 python神经网络 手写数字图片识别(5)

    import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...

  4. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  5. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  6. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  7. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  8. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  9. 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用

    #训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  10. 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

随机推荐

  1. Android MVP案例;

    就一个十分简单的获取列表数据并展示的Demo:分别使用MVC和MVP实现: 先来一个假的数据源: //假设这就是数据源 public class UserBean { public static Li ...

  2. datagrid行内编辑时为datetimebox

    $.extend($.fn.datagrid.defaults.editors, { datetimebox: {// datetimebox就是你要自定义editor的名称 init: functi ...

  3. appium运行时每次默认弹出appiumsetting与unlock重装,关闭这两个步骤的方法

    找到appium安装目录,可以在 appium 源码里(C:\Program Files (x86)\Appium\node_modules\appium\lib\devices\android)注释 ...

  4. Beanutils工具常用方法

      BeanUtils工具是一种方便我们对JavaBean进行操作的工具,是Apache组织下的产品.其主要目的是利用反射机制对JavaBean的属性进行处理. BeanUtils工具一般可以方便ja ...

  5. FreeMarker的空值运算符和逻辑运算符

    1.空值处理运算符 如果你在模板中使用了变量但是在代码中没有对变量赋值,那么运行生成时会抛出异常.但是有些时候,有的变量确实是null,怎么解决这个问题呢? 判断某变量是否存在:“??” 用法为:va ...

  6. iOS保存gif动态图

    - (void)saveImageToPhotos:(NSData*)gifData { /***注意先倒入库 #import <AssetsLibrary/AssetsLibrary.h> ...

  7. MIME Type和Content-Type

    告知浏览器:资源的媒体类型MIME Type: application/json HTTP协议中的媒体类型,由 Web服务器告知浏览器的,更准确地说,是通过响应头中的Content-Type表示.Co ...

  8. eclipse创建的maven项目中使用javafx

    类似普通maven项目,不需要特地创建javafx项目. 将fxml资源文件放在resource目录下即可.

  9. 转载:C++函数中new一块内存,作为返回值

    转载来自:http://blog.itpub.net/7728585/viewspace-2123621/ 今天遇到一个问题,C++编程时,函数中new一块内存,然后将申请内存的指针作为返回值.怎么d ...

  10. SSO单点登录、跨域重定向、跨域设置Cookie、京东单点登录实例分析

    最近在研究SSO单点登录技术,其中有一种就是通过js的跨域设置cookie来达到单点登录目的的,下面就已京东商城为例来解释下跨域设置cookie的过程 涉及的关键知识点: 1.jquery ajax跨 ...