import random
import numpy as np
np.random.randint(0,49,3)

##required libararies
import tensorflow as tf
#import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D

###MNIST dataset
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("./MNIST_data",one_hot=False)

## Establish train and test dataset
train_X,train_Y,test_X,test_Y=mnist.train.images,\
mnist.train.labels,mnist.test.images,mnist.test.labels

print(train_X.shape,train_Y.shape,test_X.shape,test_Y.shape)

train_Y[80]

3

import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(np.reshape(train_X[80],(28,28)),cmap='gray')
plt.show()

from keras.utils import np_utils #(utilities)
n_classes=10
train_y=keras.utils.to_categorical(train_Y,n_classes)
test_y=keras.utils.to_categorical(test_Y,n_classes)

print(train_y.shape,test_y.shape)

train_y[0]

np.argmax(train_y[0],axis=0)

7

Drop_prob=0.2
from keras.layers import Activation,Flatten
###设定模型为序贯模型###
model=Sequential()

###C O N V O L U T I O N L A Y E R 1###
model.add(Convolution2D(filters=32,kernel_size=(3,3),input_shape=(28,28,1),strides=(1, 1),padding='same'))
model.add(Activation("relu"))

###P O O L I N G L A Y E R 1###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Dropout(Drop_prob))

###C O N V O L U T I O N L A Y E R 2###
model.add(Convolution2D(filters=64,kernel_size=(3,3),input_shape=(14,14,32),strides=(1, 1),padding='same'))
model.add(Activation("relu"))

###P O O L I N G L A Y E R 2###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Dropout(Drop_prob))

###C O N V O L U T I O N L A Y E R 3###
model.add(Convolution2D(filters=128,kernel_size=(3,3),input_shape=(7,7,64),strides=(1, 1),padding='same'))
model.add(Activation("relu"))

###P O O L I N G L A Y E R 3###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten())
model.add(Dropout(Drop_prob))

###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=128,activation="relu"))
model.add(Dropout(0.5))

###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=512,activation="relu"))
model.add(Dropout(0.5))

###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=n_classes,activation="softmax"))
model.summary()

num_parameters

18496

from keras.optimizers import Adam
train_X=np.reshape(train_X,(train_X.shape[0],28,28,1))
##compile
model.compile(optimizer=Adam(),loss="categorical_crossentropy",metrics=['accuracy'])
##train
model.fit(train_X,train_y,epochs=100,batch_size=256,verbose=1)

evaluation=model.evaluate(test_X,test_y,batch_size=256,verbose=0)
print("loss:%.4f",evaluation[0],"acuraccy:%.4f",evaluation[1])

吴裕雄 python神经网络(6)的更多相关文章

  1. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  2. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  3. 吴裕雄 python神经网络 手写数字图片识别(5)

    import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...

  4. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  5. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  6. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  7. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  8. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  9. 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用

    #训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  10. 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

随机推荐

  1. python多进程与服务器并发

    进程 什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 进程与程序的区别 程序仅仅只是一堆代码而已,而进程指的是程序的运行过程. 并发与并行 无论是并行还是并发,在用户看 ...

  2. python-day02-购物车

    购物车 需求: 1.启动程序后,让用户输入工资,然后打印商品列表: 2.容许用户根据商品编号购买商品: 3.用户选择商品后,检测余额是否足够,够了就直接扣款,不够就提醒客户: 4.随时可以退出,退出时 ...

  3. jq遍历list和object

    <script> //----------------for用来遍历数组对象-- var i,myArr = [1,2,3]; for (var i = 0; i < myArr.l ...

  4. 【Jenkins学习】安装配置和使用(一)

    为了能够频繁地将软件的最新版本,及时.持续地交付给测试团队及质量控制团队,以供评审,所以引入持续集成工具Jenkins,从而实现公司新产品持续集成,自动化部署. 环境准备 ●操作系统:Windows1 ...

  5. Maven私服安装

    下载安装包:nexus(https://www.sonatype.com/download-oss-sonatype) 默认用户密码字符串: adminAdministratorUseractive& ...

  6. Linux设置时间

    设置时间为2017年5月18号9:55:15 date -s "2017-05-18 09:55:15" 修改完后执行clock -w,把系统时间写入CMOS clock -w

  7. Android Netty Client

    Android netty client Start a netty client on android Download netty Download url :https://netty.io/d ...

  8. flex学习笔记 显示数字步进

    <?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx="ht ...

  9. 转载:明明白白VC LIB和DLL的使用

    转载来自:http://dpinglee.blog.163.com/blog/static/1440977532016316813889/ 1.加载lib/头文件 分两种方法: (1)适用于当前项目 ...

  10. asp.net excel导出去除科学计数法的表示格式

    去除导出excel中的科学计数法的表示格式:在td标签里面加个样式:style=\"vnd.ms-excel.numberformat:@\" <td style=\&quo ...