import random
import numpy as np
np.random.randint(0,49,3)

##required libararies
import tensorflow as tf
#import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D

###MNIST dataset
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("./MNIST_data",one_hot=False)

## Establish train and test dataset
train_X,train_Y,test_X,test_Y=mnist.train.images,\
mnist.train.labels,mnist.test.images,mnist.test.labels

print(train_X.shape,train_Y.shape,test_X.shape,test_Y.shape)

train_Y[80]

3

import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(np.reshape(train_X[80],(28,28)),cmap='gray')
plt.show()

from keras.utils import np_utils #(utilities)
n_classes=10
train_y=keras.utils.to_categorical(train_Y,n_classes)
test_y=keras.utils.to_categorical(test_Y,n_classes)

print(train_y.shape,test_y.shape)

train_y[0]

np.argmax(train_y[0],axis=0)

7

Drop_prob=0.2
from keras.layers import Activation,Flatten
###设定模型为序贯模型###
model=Sequential()

###C O N V O L U T I O N L A Y E R 1###
model.add(Convolution2D(filters=32,kernel_size=(3,3),input_shape=(28,28,1),strides=(1, 1),padding='same'))
model.add(Activation("relu"))

###P O O L I N G L A Y E R 1###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Dropout(Drop_prob))

###C O N V O L U T I O N L A Y E R 2###
model.add(Convolution2D(filters=64,kernel_size=(3,3),input_shape=(14,14,32),strides=(1, 1),padding='same'))
model.add(Activation("relu"))

###P O O L I N G L A Y E R 2###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Dropout(Drop_prob))

###C O N V O L U T I O N L A Y E R 3###
model.add(Convolution2D(filters=128,kernel_size=(3,3),input_shape=(7,7,64),strides=(1, 1),padding='same'))
model.add(Activation("relu"))

###P O O L I N G L A Y E R 3###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten())
model.add(Dropout(Drop_prob))

###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=128,activation="relu"))
model.add(Dropout(0.5))

###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=512,activation="relu"))
model.add(Dropout(0.5))

###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=n_classes,activation="softmax"))
model.summary()

num_parameters

18496

from keras.optimizers import Adam
train_X=np.reshape(train_X,(train_X.shape[0],28,28,1))
##compile
model.compile(optimizer=Adam(),loss="categorical_crossentropy",metrics=['accuracy'])
##train
model.fit(train_X,train_y,epochs=100,batch_size=256,verbose=1)

evaluation=model.evaluate(test_X,test_y,batch_size=256,verbose=0)
print("loss:%.4f",evaluation[0],"acuraccy:%.4f",evaluation[1])

吴裕雄 python神经网络(6)的更多相关文章

  1. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  2. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  3. 吴裕雄 python神经网络 手写数字图片识别(5)

    import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...

  4. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  5. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  6. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  7. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  8. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  9. 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用

    #训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  10. 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

随机推荐

  1. python+selenium+PhantomJS批量投递智联简历(不要用自己的账号进行测试,请使用小号,很烦人的,哈哈哈)

    1.环境python2.7+selenium+PhantomJS(软件安装和库的安装网上都有教程我们跳过,so easy) 2.原理 绕过首页登录需要验证码,直接进入搜索栏,输入搜索的职位+地区搜索出 ...

  2. Python开发之AJAX

    一.概述 对于WEB应用程序:用户浏览器发送请求,服务器接收并处理请求,然后返回结果,往往返回就是字符串(HTML),浏览器将字符串(HTML)渲染并显示浏览器上. 1.传统的Web应用:一个简单操作 ...

  3. WPF DataGrid多表头/列头,多行头,合并单元格,一列占据多行

    先上效果图: 思路说明:这是两个DataGrid,没有嵌套,位置和高度保持一致,在加上ScrollViewer滚动条,这就像是在一个DataGrid中. 缺点: 因为最外层有透明的Border,所以没 ...

  4. JQ 文本超出

    原链接:https://blog.csdn.net/sinat_32546159/article/details/56340528 <script type="text/javascr ...

  5. django-Q模块实现查询

    django Q模块 from django.db.models import Q def search(request): q = request.GET.get('q') if q: # 查询字段 ...

  6. Implement a deployment tool such as Ansible, Chef, Puppet, or Salt to automate deployment and management of the production environment

    Implement a deployment tool such as Ansible, Chef, Puppet, or Salt to automate deployment and manage ...

  7. Linq的常见查询

    首先定义几个模型类: /// <summary> /// 员工类 /// </summary> public class Employee { /// <summary& ...

  8. spark基础知识介绍(包含foreachPartition写入mysql)

    数据本地性 数据计算尽可能在数据所在的节点上运行,这样可以减少数据在网络上的传输,毕竟移动计算比移动数据代价小很多.进一步看,数据如果在运行节点的内存中,就能够进一步减少磁盘的I/O的传输.在spar ...

  9. [转]J-Link Commander的妙用

    转自http://maker.zlgmcu.com/portal.php?mod=view&aid=3685 J-Link Commander作为J-Link驱动软件包的一个工具之一,为工程师 ...

  10. Tomcat 配置Https

    https://www.cnblogs.com/wanghaoyuhappy/p/5267702.html JDK1.8 keytool 生存证书 C:\keys\tomcat.keystore 1: ...