吴裕雄 python神经网络(6)
import random
import numpy as np
np.random.randint(0,49,3)
##required libararies
import tensorflow as tf
#import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D
###MNIST dataset
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("./MNIST_data",one_hot=False)
## Establish train and test dataset
train_X,train_Y,test_X,test_Y=mnist.train.images,\
mnist.train.labels,mnist.test.images,mnist.test.labels
print(train_X.shape,train_Y.shape,test_X.shape,test_Y.shape)
train_Y[80]
3
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(np.reshape(train_X[80],(28,28)),cmap='gray')
plt.show()
from keras.utils import np_utils #(utilities)
n_classes=10
train_y=keras.utils.to_categorical(train_Y,n_classes)
test_y=keras.utils.to_categorical(test_Y,n_classes)
print(train_y.shape,test_y.shape)
train_y[0]
np.argmax(train_y[0],axis=0)
7
Drop_prob=0.2
from keras.layers import Activation,Flatten
###设定模型为序贯模型###
model=Sequential()
###C O N V O L U T I O N L A Y E R 1###
model.add(Convolution2D(filters=32,kernel_size=(3,3),input_shape=(28,28,1),strides=(1, 1),padding='same'))
model.add(Activation("relu"))
###P O O L I N G L A Y E R 1###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Dropout(Drop_prob))
###C O N V O L U T I O N L A Y E R 2###
model.add(Convolution2D(filters=64,kernel_size=(3,3),input_shape=(14,14,32),strides=(1, 1),padding='same'))
model.add(Activation("relu"))
###P O O L I N G L A Y E R 2###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Dropout(Drop_prob))
###C O N V O L U T I O N L A Y E R 3###
model.add(Convolution2D(filters=128,kernel_size=(3,3),input_shape=(7,7,64),strides=(1, 1),padding='same'))
model.add(Activation("relu"))
###P O O L I N G L A Y E R 3###
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten())
model.add(Dropout(Drop_prob))
###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=128,activation="relu"))
model.add(Dropout(0.5))
###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=512,activation="relu"))
model.add(Dropout(0.5))
###F U L L Y C O N N E C T E D(FC)###
model.add(Dense(units=n_classes,activation="softmax"))
model.summary()
num_parameters
18496
from keras.optimizers import Adam
train_X=np.reshape(train_X,(train_X.shape[0],28,28,1))
##compile
model.compile(optimizer=Adam(),loss="categorical_crossentropy",metrics=['accuracy'])
##train
model.fit(train_X,train_y,epochs=100,batch_size=256,verbose=1)
evaluation=model.evaluate(test_X,test_y,batch_size=256,verbose=0)
print("loss:%.4f",evaluation[0],"acuraccy:%.4f",evaluation[1])
吴裕雄 python神经网络(6)的更多相关文章
- 吴裕雄 python神经网络 花朵图片识别(10)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 花朵图片识别(9)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 手写数字图片识别(5)
import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...
- 吴裕雄 python神经网络 水果图片识别(4)
# coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...
- 吴裕雄 python神经网络 水果图片识别(3)
import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...
- 吴裕雄 python神经网络 水果图片识别(2)
import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...
- 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...
- 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...
- 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...
- 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
随机推荐
- python+selenium+PhantomJS批量投递智联简历(不要用自己的账号进行测试,请使用小号,很烦人的,哈哈哈)
1.环境python2.7+selenium+PhantomJS(软件安装和库的安装网上都有教程我们跳过,so easy) 2.原理 绕过首页登录需要验证码,直接进入搜索栏,输入搜索的职位+地区搜索出 ...
- Python开发之AJAX
一.概述 对于WEB应用程序:用户浏览器发送请求,服务器接收并处理请求,然后返回结果,往往返回就是字符串(HTML),浏览器将字符串(HTML)渲染并显示浏览器上. 1.传统的Web应用:一个简单操作 ...
- WPF DataGrid多表头/列头,多行头,合并单元格,一列占据多行
先上效果图: 思路说明:这是两个DataGrid,没有嵌套,位置和高度保持一致,在加上ScrollViewer滚动条,这就像是在一个DataGrid中. 缺点: 因为最外层有透明的Border,所以没 ...
- JQ 文本超出
原链接:https://blog.csdn.net/sinat_32546159/article/details/56340528 <script type="text/javascr ...
- django-Q模块实现查询
django Q模块 from django.db.models import Q def search(request): q = request.GET.get('q') if q: # 查询字段 ...
- Implement a deployment tool such as Ansible, Chef, Puppet, or Salt to automate deployment and management of the production environment
Implement a deployment tool such as Ansible, Chef, Puppet, or Salt to automate deployment and manage ...
- Linq的常见查询
首先定义几个模型类: /// <summary> /// 员工类 /// </summary> public class Employee { /// <summary& ...
- spark基础知识介绍(包含foreachPartition写入mysql)
数据本地性 数据计算尽可能在数据所在的节点上运行,这样可以减少数据在网络上的传输,毕竟移动计算比移动数据代价小很多.进一步看,数据如果在运行节点的内存中,就能够进一步减少磁盘的I/O的传输.在spar ...
- [转]J-Link Commander的妙用
转自http://maker.zlgmcu.com/portal.php?mod=view&aid=3685 J-Link Commander作为J-Link驱动软件包的一个工具之一,为工程师 ...
- Tomcat 配置Https
https://www.cnblogs.com/wanghaoyuhappy/p/5267702.html JDK1.8 keytool 生存证书 C:\keys\tomcat.keystore 1: ...