Cogs 1632. 搬运工(二分图最小点覆盖)
- 搬运工
★ 输入文件:worker.in 输出文件:worker.out 简单对比
时间限制:1 s 内存限制:256 MB
【题目描述】
小涵向小宇推荐了一款小游戏。
游戏是这样的,在一个n*n的地图中,有若干个格子上有障碍物。你需要雇佣搬运工,将这些障碍物全部清除。不过每次操作你只能让搬运工将某一行或者某一列的障碍物全部清除。如果你让搬运工清除第i行障碍物,需要付出ai元;如果你让搬运工清除第j列障碍物,需要付出bj元。
小涵告诉小宇,必须用尽可能少的次数消除这些障碍物。若有多种方案,则必须花费尽量少的费用。结果小宇想了很久仍然没有闯过第一关,只好向你求助了。
【输入格式】
第1行,一个正整数n。
第2~n+1行,每行n个字符。第i+1行的第j个字符表示地图的坐标(i, j)的格子(左上角为起点(1, 1))。’*’表示障碍,’.’表示空格。
第n+2行,n个正整数,第i个数表示清除地图第i行的费用。
第n+3行,n个正整数,第i个数表示清除地图第i列的费用。
【输出格式】
输出2行。第1行是最少次数,第2行是在最少次数的前提下费用的最小值。
【样例输入】
3
…
.*.
**.
10 5 17
1 8 4
【样例输出】
2
9
【提示】
30%的数据满足对于任意i和j(1 <= i, j <= n),有ai = bj。
100%的数据满足1 <= n <= 200,0 <= ai, bj <= 100.
[样例说明]一共有三个障碍物,坐标分别是(2, 2), (3, 1), (3, 2)。消除第1列和第2列是最优方案。
【来源】
HZOI
/*
网络流渣渣表示题解很神.
二分图的两边分别是行和列.
二分图的两边连障碍.
两侧有一侧消去这个障碍就消去了.
so 就转换成了最小点覆盖.
最小点覆盖:选取最少的点数,使这些点和所有的边都有关联(把所有的边的覆盖).
最小点覆盖数=最大匹配数=最大流.
这题还要求一个最小点覆盖下的最小花费.
我们把S到行的流量由1改为inf+a[i].
把列到T的流量由1改为inf+b[i].
于是我们就在不影响答案的情况下
同时算出了最大匹配和最小花费.
ansc=ans/inf,ansf=ans%inf;
*/
#include<iostream>
#include<cstdio>
#include<queue>
#define MAXN 410
#define INF 1e9
const int inf=1e6;
using namespace std;
int n,m,S,T,ans,cut=1,dis[MAXN],a[MAXN],b[MAXN],head[MAXN],ansf,ansc;
char g[MAXN][MAXN];
queue<int>q;
struct data{int u,v,next,c;}e[MAXN*MAXN*6];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void add(int u,int v,int c)
{
e[++cut].u=u;e[cut].v=v;e[cut].c=c;e[cut].next=head[u];head[u]=cut;
e[++cut].u=v;e[cut].v=u;e[cut].c=0;e[cut].next=head[v];head[v]=cut;
}
bool bfs()
{
for(int i=S;i<=T;i++) dis[i]=-1;dis[S]=0;
q.push(S);
while(!q.empty())
{
int u=q.front();q.pop();b[u]=0;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]==-1&&e[i].c)
{
dis[v]=dis[u]+1;
q.push(v);
}
}
}
return dis[T]!=-1;
}
int dfs(int u,int y)
{
if(u==T) return y;
int rest=0;
for(int i=head[u];i&&rest<y;i=e[i].next)
{
int v=e[i].v;
if(dis[v]==dis[u]+1&&e[i].c)
{
int x=dfs(v,min(y-rest,e[i].c));
e[i].c-=x;
e[i^1].c+=x;
rest+=x;
}
}
if(!rest) dis[u]=-1;
return rest;
}
void dinic()
{
while(bfs()) ans+=dfs(S,INF);
ansc=ans/inf,ansf=ans%inf;
}
int main()
{
freopen("worker.in","r",stdin);
freopen("worker.out","w",stdout);
int x;
n=read();S=0,T=2*n+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>g[i][j];
for(int i=1;i<=n;i++)
{
a[i]=read();
add(S,i,inf+a[i]);
}
for(int i=1;i<=n;i++)
{
b[i]=read();
add(i+n,T,inf+b[i]);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(g[i][j]=='*') add(i,j+n,INF);
}
dinic();
printf("%d\n%d",ansc,ansf);
return 0;
}
Cogs 1632. 搬运工(二分图最小点覆盖)的更多相关文章
- POJ2226 Muddy Fields(二分图最小点覆盖集)
题目给张R×C的地图,地图上*表示泥地..表示草地,问最少要几块宽1长任意木板才能盖住所有泥地,木板可以重合但不能盖住草地. 把所有行和列连续的泥地(可以放一块木板铺满的)看作点且行和列连续泥地分别作 ...
- POJ1325 Machine Schedule(二分图最小点覆盖集)
最小点覆盖集就是在一个有向图中选出最少的点集,使其覆盖所有的边. 二分图最小点覆盖集=二分图最大匹配(二分图最大边独立集) 这题A机器的n种模式作为X部的点,B机器的m种模式作为Y部的点: 每个任务就 ...
- hihoCoder #1127:二分图最小点覆盖和最大独立集
题目大意:求二分图最小点覆盖和最大独立集. 题目分析:如果选中一个点,那么与这个点相连的所有边都被覆盖,使所有边都被覆盖的最小点集称为最小点覆盖,它等于最大匹配:任意两个点之间都没有边相连的最大点集称 ...
- [POJ] 2226 Muddy Fields(二分图最小点覆盖)
题目地址:http://poj.org/problem?id=2226 二分图的题目关键在于建图.因为“*”的地方只有两种木板覆盖方式:水平或竖直,所以运用这种方式进行二分.首先按行排列,算出每个&q ...
- 二分图 最小点覆盖 poj 3041
题目链接:Asteroids - POJ 3041 - Virtual Judge https://vjudge.net/problem/POJ-3041 第一行输入一个n和一个m表示在n*n的网格 ...
- HihoCoder1127 二分图三·二分图最小点覆盖和最大独立集
二分图三·二分图最小点覆盖和最大独立集 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上次安排完相亲之后又过了挺长时间,大家好像都差不多见过面了.不过相亲这个事不是说 ...
- 四川第七届 D Vertex Cover(二分图最小点覆盖,二分匹配模板)
Vertex Cover frog has a graph with nn vertices v(1),v(2),…,v(n)v(1),v(2),…,v(n) and mm edges (v(a1), ...
- hihoCoder #1127 : 二分图二·二分图最小点覆盖和最大独立集
#1127 : 二分图二·二分图最小点覆盖和最大独立集 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 在上次安排完相亲 ...
- Asteroids POJ - 3041 二分图最小点覆盖
Asteroids POJ - 3041 Bessie wants to navigate her spaceship through a dangerous asteroid field in ...
随机推荐
- js提取135编辑器相同的css
135编辑器导入的内容,有重复的很多css,导致加载很慢,只能去掉 function remove135FormatContent(content){ if(!content) return ''; ...
- MVC通过ViewBag动态生成Html输出到View
今天再给自己总结一下,关于ViewBag赋值Html格式值,但是在web页显示不正常; 例如,ViewBag.Content = "<p>你好,我现在测试一个东西.</p& ...
- 【转载】JAVA SpringBoot 项目打成jar包供第三方引用自动配置(Spring发现)解决方案
JAVA SpringBoot 项目打成jar包供第三方引用自动配置(Spring发现)解决方案 本文为转载,原文地址为:https://www.cnblogs.com/adversary/p/103 ...
- np.newaxis的使用及有趣的数组相乘
a=np.array([1,2,3,4])a=a[np.newaxis,:] #固定行,相当于1行多列b=np.array([2,4,6]) b=b[:,np.newaxis] #固定列,相当与多行1 ...
- Python DBUtils 连接池对象 (PooledDB)
数据处理框架用到 mysql, 需要在多进程中的多线程中使用 mysql 的连接 使用到的模块: DBUtils 实现: 使用 DBUtils 中的 PooledDB 类来实现. 自己写一个类, 继承 ...
- 换个语言学一下 Golang (9)——结构体和接口
基本上到这里的时候,就是上了一个台阶了.Go的精华特点即将展开. 结构体定义 上面我们说过Go的指针和C的不同,结构体也是一样的.Go是一门删繁就简的语言,一切令人困惑的特性都必须去掉. 简单来讲,G ...
- aria config
aria2c --conf-path=aria2.conf mine: max-concurrent-downloads=5 continue=true max-overall-download-li ...
- 【开发笔记】- 安装Git命令
1.查看linux版本信息: $ cat /etc/redhat-release 2.输入命令安装git: $ yum install git 3.等待下载,自动安装完毕,查看git版本 $ git ...
- localStorage&sessionStorage&Cookie
localStorage.sessionStorage.Cookie三者区别如下:
- Telnet入侵WindowsXP
上一章,采用图形界面配置.这一节,采用命令方式配置 //修复.bat(掩饰名字) @ echo off //关闭回显 regedit.exe /s start.reg ///s 不打印 net sta ...