《DSP using MATLAB》Problem 8.43
代码:
%% ------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 8.43 \n\n'); banner();
%% ------------------------------------------------------------------------ % Digital Highpass Filter Specifications:
wphp = 0.4*pi; % digital passband freq in rad
wshp = 0.3*pi; % digital stopband freq in rad
Rp = 1.0; % passband ripple in dB
As = 40; % stopband attenuation in dB Ripple = 10 ^ (-Rp/20) % passband ripple in absolute
Attn = 10 ^ (-As/20) % stopband attenuation in absolute fprintf('\n*******Digital Highpass, Coefficients of DIRECT-form***********\n');
%[bhp, ahp] = butthpf(wphp, wshp, Rp, As)
%[bhp, ahp] = cheb1hpf(wphp, wshp, Rp, As)
%[bhp, ahp] = cheb2hpf(wphp, wshp, Rp, As)
[bhp, ahp] = eliphpf(wphp, wshp, Rp, As);
[C, B, A] = dir2cas(bhp, ahp) % Calculation of Frequency Response:
%[dblp, maglp, phalp, grdlp, wwlp] = freqz_m(blp, alp);
[dbhp, maghp, phahp, grdhp, wwhp] = freqz_m(bhp, ahp); % ---------------------------------------------------------------
% find Actual Passband Ripple and Min Stopband attenuation
% ---------------------------------------------------------------
delta_w = 2*pi/1000;
Rp_hp = -(min(dbhp(ceil(wphp/delta_w+1):1:501))); % Actual Passband Ripple fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp_hp); As_hp = -round(max(dbhp(1:1:ceil(wshp/delta_w)+1))); % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n\n', As_hp); %% -----------------------------------------------------------------
%% Plot
%% overall analog filter over the [0, 5KHz] inteval
%% ----------------------------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 8.43 Elliptic Highpass by eliphpf function')
set(gcf,'Color','white');
M = 1; % Omega max
Fs = 10; % sampling rate of 10 KHz subplot(2,2,1); plot(wwhp*Fs/(2*pi), maghp); grid on;%axis([0, M, 0, 1.2]);
%xlabel('Digital frequency in \pi units');
xlabel('analog frequency in KHz units');
ylabel('|H|'); title('Highpass Filter Magnitude Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, M]*Fs/2);
set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.8913, 1]); subplot(2,2,2); plot(wwhp*Fs/(2*pi), dbhp); grid on;%axis([0, M, -100, 2]);
%xlabel('Digital frequency in \pi units');
xlabel('analog frequency in KHz units');
ylabel('Decibels'); title('Highpass Filter Magnitude in dB');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, M]*Fs/2);
set(gca, 'YTickMode', 'manual', 'YTick', [-70, -40, -1, 0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['70'; '40';'1 ';' 0']); subplot(2,2,3); plot(wwhp*Fs/(2*pi), phahp/pi); grid on; %axis([0, M, -1.1, 1.1]);
%xlabel('Digital frequency in \pi nuits');
xlabel('analog frequency in KHz units');
ylabel('radians in \pi units'); title('Highpass Filter Phase Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, M]*Fs/2);
set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]); subplot(2,2,4); plot(wwhp*Fs/(2*pi), grdhp); grid on; %axis([0, M, 0, 25]);
%xlabel('Digital frequency in \pi units');
xlabel('analog frequency in KHz units');
ylabel('Samples'); title('Highpass Filter Group Delay');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, M]*Fs/2);
set(gca, 'YTickMode', 'manual', 'YTick', [0:10:25]); % ----------------------------------------------------------
% Part 2 digital prototype lowpass filter
% ----------------------------------------------------------
% Digital lowpass Filter Specifications:
[wpLP, wsLP, alpha] = hp2lpfre(wphp, wshp); % Calculation of Elliptic lp filter parameters:
[N, wn] = ellipord(wpLP/pi, wsLP/pi, Rp, As);
fprintf('\n********** Elliptic Filter Order = %3.0f \n', N) % Digital Elliptic lowpass Filter Design:
[blp, alp] = ellip(N, Rp, As, wn, 'low'); [C, B, A] = dir2cas(blp, alp) % Calculation of Frequency Response:
[dblp, maglp, phalp, grdlp, wwlp] = freqz_m(blp, alp); % ---------------------------------------------------------------
% find Actual Passband Ripple and Min Stopband attenuation
% ---------------------------------------------------------------
delta_w = 2*pi/1000;
Rp_lp = -(min(dblp(1:1:ceil(wpLP/delta_w+1)+1))); % Actual Passband Ripple fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp_lp); As_lp = -round(max(dblp(ceil(wsLP/delta_w)+1):1:501)); % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n\n', As_lp); %% -----------------------------------------------------------------
%% Plot
%% ----------------------------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 8.43 Elliptic Prototype Lowpass by ellip function')
set(gcf,'Color','white');
M = 1; % Omega max subplot(2,2,1); plot(wwlp/pi, maglp); axis([0, M, 0, 1.2]); grid on;
xlabel('Digital frequency in \pi units'); ylabel('|H|');
title('lowpass Filter Magnitude Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, wpLP, wsLP, pi]/pi);
set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.8913, 1]); subplot(2,2,2); plot(wwlp/pi, dblp); axis([0, M, -100, 2]); grid on;
xlabel('Digital frequency in \pi units'); ylabel('Decibels');
title('lowpass Filter Magnitude in dB');
set(gca, 'XTickMode', 'manual', 'XTick', [0, wpLP, wsLP, pi]/pi);
set(gca, 'YTickMode', 'manual', 'YTick', [-70, -40, -1, 0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['70'; '40';'1 ';' 0']); subplot(2,2,3); plot(wwlp/pi, phalp/pi); axis([0, M, -1.1, 1.1]); grid on;
xlabel('Digital frequency in \pi nuits'); ylabel('radians in \pi units');
title('lowpass Filter Phase Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, wpLP, wsLP, pi]/pi);
set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]); subplot(2,2,4); plot(wwlp/pi, grdlp); axis([0, M, 0, 25]); grid on;
xlabel('Digital frequency in \pi units'); ylabel('Samples');
title('lowpass Filter Group Delay');
set(gca, 'XTickMode', 'manual', 'XTick', [0, wpLP, wsLP, pi]/pi);
set(gca, 'YTickMode', 'manual', 'YTick', [0:5:25]); % -----------------------------------------------------
% Part 3 ellip function
% -----------------------------------------------------
% Calculation of Elliptic hp filter parameters:
[N, wn] = ellipord(wphp/pi, wshp/pi, Rp, As);
fprintf('\n********** Elliptic Digital Highpass Filter Order = %3.0f \n', N) % Digital Elliptic Highpass Filter Design:
[bhp, ahp] = ellip(N, Rp, As, wn, 'high'); [C, B, A] = dir2cas(bhp, ahp) % Calculation of Frequency Response:
%[dblp, maglp, phalp, grdlp, wwlp] = freqz_m(blp, alp);
[dbhp, maghp, phahp, grdhp, wwhp] = freqz_m(bhp, ahp); % ---------------------------------------------------------------
% find Actual Passband Ripple and Min Stopband attenuation
% ---------------------------------------------------------------
delta_w = 2*pi/1000;
Rp_hp = -(min(dbhp(ceil(wphp/delta_w+1):1:501))); % Actual Passband Ripple fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp_hp); As_hp = -round(max(dbhp(1:1:ceil(wshp/delta_w)+1))); % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n\n', As_hp); %% -----------------------------------------------------------------
%% Plot
%% ----------------------------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 8.43 Elliptic Highpass by ellip function')
set(gcf,'Color','white');
M = 1; % Omega max subplot(2,2,1); plot(wwhp/pi, maghp); axis([0, M, 0, 1.2]); grid on;
xlabel('Digital frequency in \pi units'); ylabel('|H|'); title('Highpass Filter Magnitude Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.8913, 1]); subplot(2,2,2); plot(wwhp/pi, dbhp); axis([0, M, -100, 2]); grid on;
xlabel('Digital frequency in \pi units'); ylabel('Decibels'); title('Highpass Filter Magnitude in dB');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [-70, -40, -1, 0]);
set(gca,'YTickLabelMode','manual','YTickLabel',['70'; '40';'1 ';' 0']); subplot(2,2,3); plot(wwhp/pi, phahp/pi); axis([0, M, -1.1, 1.1]); grid on;
xlabel('Digital frequency in \pi nuits'); ylabel('radians in \pi units'); title('Highpass Filter Phase Response');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]); subplot(2,2,4); plot(wwhp/pi, grdhp); axis([0, M, 0, 25]); grid on;
xlabel('Digital frequency in \pi units'); ylabel('Samples'); title('Highpass Filter Group Delay');
set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, M]);
set(gca, 'YTickMode', 'manual', 'YTick', [0:5:25]);
运行结果:
通带、阻带设计指标,绝对值单位
Elliptic型数字高通,滤波器系统函数串联形式的系数如下,阶数是5阶
采用eliphpf函数,设计的Elliptic型数字高通,幅度谱、相位谱和群延迟响应
第2小题,要画出数字低通原型的幅度谱。
Elliptic型数字低通滤波器,系统函数串联形式系数如下
采用ellip函数(MATLAB工具箱函数),设计的Elliptic型数字高通滤波器,系统函数串联形式系数如下,
幅度谱、相位谱和群延迟响应如下
《DSP using MATLAB》Problem 8.43的更多相关文章
- 《DSP using MATLAB》Problem 7.16
使用一种固定窗函数法设计带通滤波器. 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.38
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.27
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.26
注意:高通的线性相位FIR滤波器,不能是第2类,所以其长度必须为奇数.这里取M=31,过渡带里采样值抄书上的. 代码: %% +++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.25
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.24
又到清明时节,…… 注意:带阻滤波器不能用第2类线性相位滤波器实现,我们采用第1类,长度为基数,选M=61 代码: %% +++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.23
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output Info a ...
- 《DSP using MATLAB》Problem 7.15
用Kaiser窗方法设计一个台阶状滤波器. 代码: %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.14
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
随机推荐
- NX二次开发-Block UI C++界面(表达式)控件的获取(持续补充)
Expression(表达式)控件的获取 NX9+VS2012 #include <uf.h> #include <uf_modl.h> UF_initialize(); // ...
- NGINX配置之一:日志篇
打开nginx.conf配置文件: vi /usr/local/nginx/conf/nginx.conf 日志部分内容: 日志生成的到Nginx根目录logs/access.log文件,默认使用“m ...
- 安装nodejs nvm
安装nodejs sudo apt-get install nodejs sudo apt-get install npm 安装nvm https://www.runoob.com/w3cnote/n ...
- hibernate使用手写sql以及对结果list的处理
Session sees=simpleDAO.getSessionFactory().openSession(); String sql = "select * from fhcb_08_t ...
- 正则表达式Pattern类的基本用法
public void mailRegex() { // 要验证的字符串 String str = "shiruo.hdp@taobao.com"; // 邮箱验证规则 Strin ...
- 改变IntelliJ IDEA 中的system和config/plugins的默认C盘的路径
1,问题,在为idea在线安装插件时,如JProfiler,会默认安装到C盘,而本人则是希望安装到软件所在的D盘目录下,那么如何修改呢: C:\Users\xxx\.IntelliJIdea\conf ...
- 拾遗:使用 systemd-journald 管理 Docker 容器日志
在 docker.service 文件中的 ExecStart 字段中,添加(或:docker run --log-driver=journald): --log-driver=journald \ ...
- 前端(十三)—— JavaScript高级:回调函数、闭包、循环绑定、面向对象、定时器
回调函数.闭包.循环绑定.面向对象.定时器 一.函数高级 1.函数回调 // 回调函数 function callback(data) {} // 逻辑函数 function func(callbac ...
- XStream环境设置
为Windows 2000/XP设置路径: 假设安装在c:Program Filesjavajdk目录: 在“我的电脑”右键单击并选择“属性”. 在“高级”选项卡下单击“环境变量”按钮. 现在,改变“ ...
- 天道神诀--samba和NFS部署
samba yum -y install samba samba-client rpm -qa |grep samba service smb start(445端口) service nmb sta ...