吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm
from sklearn.model_selection import train_test_split def load_data_regression():
'''
加载用于回归问题的数据集
'''
diabetes = datasets.load_diabetes() #使用 scikit-learn 自带的一个糖尿病病人的数据集
# 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #支持向量机非线性回归SVR模型
def test_SVR_linear(*data):
X_train,X_test,y_train,y_test=data
regr=svm.SVR(kernel='linear')
regr.fit(X_train,y_train)
print('Coefficients:%s, intercept %s'%(regr.coef_,regr.intercept_))
print('Score: %.2f' % regr.score(X_test, y_test)) # 生成用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data_regression()
# 调用 test_LinearSVR
test_SVR_linear(X_train,X_test,y_train,y_test)

def test_SVR_poly(*data):
'''
测试 多项式核的 SVR 的预测性能随 degree、gamma、coef0 的影响.
'''
X_train,X_test,y_train,y_test=data
fig=plt.figure()
### 测试 degree ####
degrees=range(1,20)
train_scores=[]
test_scores=[]
for degree in degrees:
regr=svm.SVR(kernel='poly',degree=degree,coef0=1)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,3,1)
ax.plot(degrees,train_scores,label="Training score ",marker='+' )
ax.plot(degrees,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_poly_degree r=1")
ax.set_xlabel("p")
ax.set_ylabel("score")
ax.set_ylim(-1,1.)
ax.legend(loc="best",framealpha=0.5) ### 测试 gamma,固定 degree为3, coef0 为 1 ####
gammas=range(1,40)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVR(kernel='poly',gamma=gamma,degree=3,coef0=1)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,3,2)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_poly_gamma r=1")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
### 测试 r,固定 gamma 为 20,degree为 3 ######
rs=range(0,20)
train_scores=[]
test_scores=[]
for r in rs:
regr=svm.SVR(kernel='poly',gamma=20,degree=3,coef0=r)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,3,3)
ax.plot(rs,train_scores,label="Training score ",marker='+' )
ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_poly_r gamma=20 degree=3")
ax.set_xlabel(r"r")
ax.set_ylabel("score")
ax.set_ylim(-1,1.)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_SVR_poly
test_SVR_poly(X_train,X_test,y_train,y_test)

def test_SVR_rbf(*data):
'''
测试 高斯核的 SVR 的预测性能随 gamma 参数的影响
'''
X_train,X_test,y_train,y_test=data
gammas=range(1,20)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVR(kernel='rbf',gamma=gamma)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_rbf")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_SVR_rbf
test_SVR_rbf(X_train,X_test,y_train,y_test)

def test_SVR_sigmoid(*data):
'''
测试 sigmoid 核的 SVR 的预测性能随 gamma、coef0 的影响.
'''
X_train,X_test,y_train,y_test=data
fig=plt.figure() ### 测试 gammam,固定 coef0 为 0.01 ####
gammas=np.logspace(-1,3)
train_scores=[]
test_scores=[] for gamma in gammas:
regr=svm.SVR(kernel='sigmoid',gamma=gamma,coef0=0.01)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,2,1)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_sigmoid_gamma r=0.01")
ax.set_xscale("log")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
### 测试 r ,固定 gamma 为 10 ######
rs=np.linspace(0,5)
train_scores=[]
test_scores=[] for r in rs:
regr=svm.SVR(kernel='sigmoid',coef0=r,gamma=10)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,2,2)
ax.plot(rs,train_scores,label="Training score ",marker='+' )
ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_sigmoid_r gamma=10")
ax.set_xlabel(r"r")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_SVR_sigmoid
test_SVR_sigmoid(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——支持向量机非线性回归SVR模型的更多相关文章
- 吴裕雄 python 机器学习——支持向量机线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——密度聚类DBSCAN模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——半监督学习LabelSpreading模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
随机推荐
- 练习六十七:HTML练习
题目:一个html文件,找出里面的链接 代码: from html.parser import HTMLParser import urllib.request class myhtml(HTMLPa ...
- 锁、CAS操作和无锁队列的实现
https://blog.csdn.net/yishizuofei/article/details/78353722 锁的机制 锁和人很像,有的人乐观,总会想到好的一方面,所以只要越努力,就会越幸运: ...
- linux开机启动服务学习chkconfig命令
选项: --add:增加所指定的系统服务,让chkconfig指令得以管理它,并同时在系统启动的叙述文件内增加相关数据: --del:删除所指定的系统服务,不再由chkconfig指令管理,并同时在系 ...
- Rest Framework简介 和 RESTful API 设计指南
使用Django Rest Framework之前我们要先知道,它是什么,能干什么用? Django Rest Framework 是一个强大且灵活的工具包,用以构建Web API 为什么要使用Res ...
- shiro【filter】
alt+7 OncePerRequestFilter public final void doFilter(ServletRequest request, ServletResponse respon ...
- 3dsmax 卸载/安装失败/出错 2019/2018/2017/2016/2015/2013/2012
AUTO Uninstaller 更新下载地址 1.选择3dsmax 2.选择版本 3.点击“开始卸载”
- cout和printf不能混用
1.两者的缓存机制不同:printf无缓冲区,而std::cout有 (其实printf也是有缓冲区的,https://blog.csdn.net/ithzhang/article/details/6 ...
- 网络编程api总结
1.socket函数创建一个socket连接,此时该socket连接为主动式. fd(int)->fd(struct fd)->file->sock:sock->file 2. ...
- firefox插件-自动化测试工具-selenium IDE
教程:http://www.yiibai.com/selenium/selenium_download_ide.html 下载地址:https://addons.mozilla.org/en-US/f ...
- ThreadFactory
在Java中有两类线程:User Thread(用户线程).Daemon Thread(守护线程) 比如,任何一个守护线程都是整个JVM中所有非守护线程的保姆:只要当前JVM实例中尚存在任何一个非守护 ...