import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm
from sklearn.model_selection import train_test_split def load_data_regression():
'''
加载用于回归问题的数据集
'''
diabetes = datasets.load_diabetes() #使用 scikit-learn 自带的一个糖尿病病人的数据集
# 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #支持向量机非线性回归SVR模型
def test_SVR_linear(*data):
X_train,X_test,y_train,y_test=data
regr=svm.SVR(kernel='linear')
regr.fit(X_train,y_train)
print('Coefficients:%s, intercept %s'%(regr.coef_,regr.intercept_))
print('Score: %.2f' % regr.score(X_test, y_test)) # 生成用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data_regression()
# 调用 test_LinearSVR
test_SVR_linear(X_train,X_test,y_train,y_test)

def test_SVR_poly(*data):
'''
测试 多项式核的 SVR 的预测性能随 degree、gamma、coef0 的影响.
'''
X_train,X_test,y_train,y_test=data
fig=plt.figure()
### 测试 degree ####
degrees=range(1,20)
train_scores=[]
test_scores=[]
for degree in degrees:
regr=svm.SVR(kernel='poly',degree=degree,coef0=1)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,3,1)
ax.plot(degrees,train_scores,label="Training score ",marker='+' )
ax.plot(degrees,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_poly_degree r=1")
ax.set_xlabel("p")
ax.set_ylabel("score")
ax.set_ylim(-1,1.)
ax.legend(loc="best",framealpha=0.5) ### 测试 gamma,固定 degree为3, coef0 为 1 ####
gammas=range(1,40)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVR(kernel='poly',gamma=gamma,degree=3,coef0=1)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,3,2)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_poly_gamma r=1")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
### 测试 r,固定 gamma 为 20,degree为 3 ######
rs=range(0,20)
train_scores=[]
test_scores=[]
for r in rs:
regr=svm.SVR(kernel='poly',gamma=20,degree=3,coef0=r)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,3,3)
ax.plot(rs,train_scores,label="Training score ",marker='+' )
ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_poly_r gamma=20 degree=3")
ax.set_xlabel(r"r")
ax.set_ylabel("score")
ax.set_ylim(-1,1.)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_SVR_poly
test_SVR_poly(X_train,X_test,y_train,y_test)

def test_SVR_rbf(*data):
'''
测试 高斯核的 SVR 的预测性能随 gamma 参数的影响
'''
X_train,X_test,y_train,y_test=data
gammas=range(1,20)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVR(kernel='rbf',gamma=gamma)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_rbf")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_SVR_rbf
test_SVR_rbf(X_train,X_test,y_train,y_test)

def test_SVR_sigmoid(*data):
'''
测试 sigmoid 核的 SVR 的预测性能随 gamma、coef0 的影响.
'''
X_train,X_test,y_train,y_test=data
fig=plt.figure() ### 测试 gammam,固定 coef0 为 0.01 ####
gammas=np.logspace(-1,3)
train_scores=[]
test_scores=[] for gamma in gammas:
regr=svm.SVR(kernel='sigmoid',gamma=gamma,coef0=0.01)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,2,1)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_sigmoid_gamma r=0.01")
ax.set_xscale("log")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
### 测试 r ,固定 gamma 为 10 ######
rs=np.linspace(0,5)
train_scores=[]
test_scores=[] for r in rs:
regr=svm.SVR(kernel='sigmoid',coef0=r,gamma=10)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,2,2)
ax.plot(rs,train_scores,label="Training score ",marker='+' )
ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_sigmoid_r gamma=10")
ax.set_xlabel(r"r")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
plt.show() # 调用 test_SVR_sigmoid
test_SVR_sigmoid(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——支持向量机非线性回归SVR模型的更多相关文章

  1. 吴裕雄 python 机器学习——支持向量机线性回归SVR模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  2. 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  3. 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  4. 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  5. 吴裕雄 python 机器学习——密度聚类DBSCAN模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  6. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  7. 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  8. 吴裕雄 python 机器学习——半监督学习LabelSpreading模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...

  9. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

随机推荐

  1. 问题:modbus_tk开发中遇到[Errno 98] Address already in use (已解决)

    案例: from modbus_tk import modbus_tcp,defines import time s = modbus_tcp.TcpServer(port=5300) def mai ...

  2. B树与B+

    简单剖析B树(B-Tree)与B+树https://blog.csdn.net/z_ryan/article/details/79685072 B树和B+树的插入.删除图文详解https://www. ...

  3. 13-----BBS论坛

    BBS论坛(十三) 13.1点击更换图形验证码 (1)front/signup.html <div class="form-group"> <div class= ...

  4. 转 JDBC连接数据库(二)——连接池

    https://www.cnblogs.com/xiaotiaosi/p/6398371.html 数据库保持长连接,不过一直都是idle,除非有用户激活连接,这样后果是无法删除用户,但是不影响数据库 ...

  5. OS---存储器

    1.存储器的层次结构 1.1 概述 理想情况下,存储器应当速度非常快.并且与处理器的速度匹配.容量大且价格低廉: 实际情况,无法满足上述三个条件: 于是在现在OS中,存储器采用  层次结构  来组织: ...

  6. python_文件的打开和关闭

    文件对象 = open('文件名','使用方式')rt:读取一个txt文件wt: 只写打开一个txt文件,(如果没有该文件则新建该文件)会覆盖原有内容at:打开一个txt文件,并从文件指针位置追加写内 ...

  7. vue-cli构建项目在index.html中使用静态文件

    在vue-cli构建的项目中,且使用在移动端,我们希望每一个页面加载时都可以使用flexible.js来适配手机. 那么这个flexible.js被import到每一个组件中就不合适了. 好的方法是直 ...

  8. idea安装激活

    安装激活链接: https://blog.csdn.net/newabcc/article/details/80601933 激活出错链接:(key is invalid 失效) https://bl ...

  9. vue学习第三天 ------ 临时笔记

    说明:之前两天属于入门,文章可能存在片段信息 vue2.x+webpack快速搭建前端项目框架详解 http://www.jb51.net/article/129463.htmVue cli + We ...

  10. BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)

    题意 题目链接 Sol 很显然的一个dp方程 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 其中\(sum_i = \sum_{j = 1}^i len ...