【算法】DP+数学优化

【题意】把n个1~m的数字分成k段,每段的价值为段内不同数字个数的平方,求最小总价值。n,m,ai<=40000

【题解】

参考自:WerKeyTom_FTD

令f[i]表示把前i个数分成若干段的最小价值。

转移中我们定义,从i开始往前到有j个不同的数的最小位置为b[j]。

f[i]=f[b[j]-1]+j^2。

考虑最坏情况,每个数自成一段,则总价值为n。

所以当段内不同的数个数>√n时,就不可能是最优解了(此时价值>n)。

所以f[i]=f[b[j]-1]+j^2,1<=j<=√n。

快速计算的关键在递推b[j]数组,首先在递推过程中同步计算上一个等数位置last[]和桶c[]。

枚举j:

如果last[i]>=b[j],不会新增数,不改变。

否则,b[j]++直到c[a[b[j]]]=b[j],此时b[j]++得到新的b[j]。

注意若元素个数不满√n个,出现新元素就top++。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=; int n,N,a[maxn],last[maxn],c[maxn],b[maxn],f[maxn],m,top;
int main(){
scanf("%d%d",&n,&N);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
m=(int)sqrt(n)+;
top=;
for(int i=;i<=n;i++){
last[i]=c[a[i]];
c[a[i]]=i;
for(int j=;j<=min(m,top);j++)if(last[i]<b[j]){
while(c[a[b[j]]]!=b[j])b[j]++;
b[j]++;
}
if(!last[i])b[++top]=;
f[i]=i;
for(int j=;j<=min(m,top);j++)f[i]=min(f[i],f[b[j]-]+j*j);
}
printf("%d",f[n]);
return ;
}

【BZOJ】1584: [Usaco2009 Mar]Cleaning Up 打扫卫生的更多相关文章

  1. DP经典 BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 419  Solve ...

  2. bzoj:1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...

  3. bzoj 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生【dp】

    参考:http://hzwer.com/3917.html 好神啊 注意到如果分成n段,那么答案为n,所以每一段最大值为\( \sqrt{n} \) 先把相邻并且值相等的弃掉 设f[i]为到i的最小答 ...

  4. BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP

    BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= ...

  5. BZOJ1584 [Usaco2009 Mar]Cleaning Up 打扫卫生

    令$f[i]$表示以i为结尾的答案最小值,则$f[i] = min \{f[j] + cnt[j + 1][i]^2\}_{1 \leq j < i}$,其中$cnt[j + 1][i]$表示$ ...

  6. [bzoj1587] [Usaco2009 Mar]Cleaning Up 打扫卫生

    首先(看题解)可得...分成的任意一段中的不同颜色个数都<=根号n...不然的话直接分成n段会更优= = 然后就好做多了.. 先预处理出对于每头牛i,和它颜色相同的前一头和后一头牛的位置. 假设 ...

  7. 【动态规划】bzoj1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    思路自然的巧妙dp Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分 ...

  8. [BZOJ1584] [Usaco2009 Mar]Cleaning Up 打扫卫生(DP)

    传送门 不会啊,看了好久的题解才看懂 TT 因为可以直接分成n段,所以就得到一个答案n,求解最小的答案,肯定是 <= n 的, 所以每一段中的不同数的个数都必须 <= sqrt(n),不然 ...

  9. bzoj1584 [Usaco2009 Mar]Cleaning Up 打扫卫生 动态规划+思维

    Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...

随机推荐

  1. UVALive - 6869 Repeated Substrings 后缀数组

    题目链接: http://acm.hust.edu.cn/vjudge/problem/113725 Repeated Substrings Time Limit: 3000MS 样例 sample ...

  2. TCP系列25—重传—15、DSACK虚假重传探测

    一.DSACK介绍 RFC2883通过指定使用SACK来指示接收端的重复包(duplicate packet)扩展了RFC2018对SACK选项的定义(SACK选项的介绍和示例参考前面内容).RFC2 ...

  3. css那些事儿4 背景图像

    background:背景颜色,图像,平铺方式,大小,位置 能够显示背景区域即为盒子模型的填充和内容部分,其中背景图像将会覆盖背景颜色.常见的水平或垂直渐变颜色背景通常使用水平或垂直渐变的背景图像在水 ...

  4. .net 简体转换繁体实例,繁体转换简体 Encode.dll、下载

    在项目中先引用Encode.dll  下面是下载地址: Encode.dll ChineseConverter.dll 1.html页面代码 <%@ Page Language="C# ...

  5. [OS] 线程相关知识点

    操作系统中引入进程的目的,是为了描述和实现多个程序的并发执行,以改善资源利用率以及提高系统吞吐量.那为什么还需要引入线程呢?下面我们先来回顾一下什么是进程: 进程有两个基本属性:·资源的拥有者:给每个 ...

  6. 为什么 MongoDB (索引)使用B-树而 Mysql 使用 B+树

    B-树由来 定义:B-树是一类树,包括B-树.B+树.B*树等,是一棵自平衡的搜索树,它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点.B-树是专门为外部存储器设计的,如磁盘,它对 ...

  7. 【Python】Python 新式类介绍

    本文转载自:kaka_ace's blog 我们使用 Python 开发时, 会遇到 class A 和 class A(object) 的写法, 这在 Python2 里是有概念上和功能上的区别, ...

  8. 第70天:jQuery基本选择器(一)

    一.jQuery基本选择器 jQuery是javascript的一个库,包含多个可重用的函数,用来辅助我们简化javascript开发 jQuery能做的javascipt都能做到,而javascri ...

  9. 【python】python字符串前面加u,r,b的含义

    1.字符串前加 u 例:u"我是含有中文字符组成的字符串." 作用:后面字符串以 Unicode 格式 进行编码,一般用在中文字符串前面,防止因为源码储存格式问题,导致再次使用时出 ...

  10. deep learning3

    9.3.Restricted Boltzmann Machine (RBM)受限玻尔兹曼基 假设有一个二部图,每一层的节点之间没有链接,一层是可视层,即输入数据层(v),一层是隐藏层(h),如果假设所 ...