吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import neighbors, datasets
from sklearn.model_selection import train_test_split def load_classification_data():
# 使用 scikit-learn 自带的手写识别数据集 Digit Dataset
digits=datasets.load_digits()
X_train=digits.data
y_train=digits.target
# 进行分层采样拆分,测试集大小占 1/4
return train_test_split(X_train, y_train,test_size=0.25,random_state=0,stratify=y_train) #KNN分类KNeighborsClassifier模型
def test_KNeighborsClassifier(*data):
X_train,X_test,y_train,y_test=data
clf=neighbors.KNeighborsClassifier()
clf.fit(X_train,y_train)
print("Training Score:%f"%clf.score(X_train,y_train))
print("Testing Score:%f"%clf.score(X_test,y_test)) # 获取分类模型的数据集
X_train,X_test,y_train,y_test=load_classification_data()
# 调用 test_KNeighborsClassifier
test_KNeighborsClassifier(X_train,X_test,y_train,y_test)
def test_KNeighborsClassifier_k_w(*data):
'''
测试 KNeighborsClassifier 中 n_neighbors 和 weights 参数的影响
'''
X_train,X_test,y_train,y_test=data
Ks=np.linspace(1,y_train.size,num=100,endpoint=False,dtype='int')
weights=['uniform','distance'] fig=plt.figure()
ax=fig.add_subplot(1,1,1)
### 绘制不同 weights 下, 预测得分随 n_neighbors 的曲线
for weight in weights:
training_scores=[]
testing_scores=[]
for K in Ks:
clf=neighbors.KNeighborsClassifier(weights=weight,n_neighbors=K)
clf.fit(X_train,y_train)
testing_scores.append(clf.score(X_test,y_test))
training_scores.append(clf.score(X_train,y_train))
ax.plot(Ks,testing_scores,label="testing score:weight=%s"%weight)
ax.plot(Ks,training_scores,label="training score:weight=%s"%weight)
ax.legend(loc='best')
ax.set_xlabel("K")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.set_title("KNeighborsClassifier")
plt.show() # 获取分类模型的数据集
X_train,X_test,y_train,y_test=load_classification_data()
# 调用 test_KNeighborsClassifier_k_w
test_KNeighborsClassifier_k_w(X_train,X_test,y_train,y_test)
def test_KNeighborsClassifier_k_p(*data):
'''
测试 KNeighborsClassifier 中 n_neighbors 和 p 参数的影响
'''
X_train,X_test,y_train,y_test=data
Ks=np.linspace(1,y_train.size,endpoint=False,dtype='int')
Ps=[1,2,10] fig=plt.figure()
ax=fig.add_subplot(1,1,1)
### 绘制不同 p 下, 预测得分随 n_neighbors 的曲线
for P in Ps:
training_scores=[]
testing_scores=[]
for K in Ks:
clf=neighbors.KNeighborsClassifier(p=P,n_neighbors=K)
clf.fit(X_train,y_train)
testing_scores.append(clf.score(X_test,y_test))
training_scores.append(clf.score(X_train,y_train))
ax.plot(Ks,testing_scores,label="testing score:p=%d"%P)
ax.plot(Ks,training_scores,label="training score:p=%d"%P)
ax.legend(loc='best')
ax.set_xlabel("K")
ax.set_ylabel("score")
ax.set_ylim(0,1.05)
ax.set_title("KNeighborsClassifier")
plt.show() # 获取分类模型的数据集
X_train,X_test,y_train,y_test=load_classification_data()
# 调用 test_KNeighborsClassifier_k_p
test_KNeighborsClassifier_k_p(X_train,X_test,y_train,y_test)
吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型的更多相关文章
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——半监督学习LabelSpreading模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——密度聚类DBSCAN模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——支持向量机线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习-KNN(2)
import matplotlib import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import ...
- 吴裕雄 python 机器学习-KNN算法(1)
import numpy as np import operator as op from os import listdir def classify0(inX, dataSet, labels, ...
- 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
随机推荐
- MySql 中IFNULL、ISNULL、NULLIF用法(数据库判空)
来源:http://blog.csdn.net/a466350665/article/details/52994761 http://blog.csdn.net/xingyu0806/article/ ...
- 用数学解赌博问题不稀奇,用赌博解数学问题才牛B
有一个经典的概率问题:平均需要抛掷多少次硬币,才会首次出现连续的 n 个正面?它的答案是 2^(n+1) – 2 .取 n=2 的话,我们就有这样的结论:平均要抛掷 6 次硬币,才能得到两个连续的正面 ...
- nginx中部署前端,后端打成jar包运行
项目是前后端分离:前端用vue开发,后端用的是springboot开发 会产生跨域问题,故在前端里用了代理 1.本前端项目是用vue开发: 1.1打包:终端 vscode快捷键:crtl+~ 然后n ...
- requests-验证码登录
ModuleNotFoundError: No module named 'bs4': 解决方法:pip install beautifulsoup4 https://blog.csdn.net/wi ...
- JS高级---复习和课程介绍
课程介绍 浅拷贝 深拷贝----------|======>递归 遍历DOM树-------|======>递归------晚上能够把代码写出来是最好的 正则表达式-------很重要 ...
- jdk8-》joining、groupingBy、summarizingInt函数
拼接函数 Collectors.joining // 3种重载方法 Collectors.joining() Collectors.joining("拼接符") Collector ...
- macaron 根目录默认为templates文件夹,所以如果启动目录同目录下有templates目录,要给它指定另一个文件夹
m *macaron.Macaron //随便指向一个目录,因为web没用到模板,不能使用默认值templates,因为这个目录被其他模板占用了m.Use(macaron.Renderer(macar ...
- error C2825: '_Iter': 当后面跟“::”时必须为类或命名空间 -- 原因可能是参数错误或者自定义函数名和库函数名冲突
今天运行程序的时候遇到了下面这个bug > B1020.cpp >e:\vs2013\vs2013_rtm_ult_chs\data\vc\include\xutility(): erro ...
- [HNOI2017] 礼物 - 多项式乘法FFT
题意:给定两个 \(n\) 元环,环上每个点有权值,分别为 \(x_i, y_i\).定义两个环的差值为 \[\sum_{i=0}^{n-1}{(x_i-y_i)^2}\] 可以旋转其中的一个环,或者 ...
- 使用Vue-MUI轮播图失效问题解决案例(在Vue的update中执行)
我使用的是mui+vue,社区关于轮播图失效的问题也有几个.我这边遇到的一个情况是我把所有的东西都写到plusReady事件中会导致轮播图搞死都不动,按照其他问答解决了vue生命周期等等的问题.提出来 ...