题目就是问怎样用最小的板覆盖全部的草地。能够横着放。也能够竖着放,同意一个草地放多个点。

建图方法就是 每一个横向的草地作为X,纵向连续的草地作为Y.     X连接Y的边表示,  这里有他们的公共点。。

非常显然,覆盖全部草地,就是覆盖全部的边 ,二分图中。最小点覆盖 = 最大匹配

= =事实上假设存在一条边未被选中的节点覆盖,则必定存在一条相应的增广路径

//tpl
//ipqhjjybj_tpl.h
//header.h
#include <cstdio>
#include <cstdlib>
#include <map>
#include <set>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <vector>
#include <string> #define mp(x,y) make_pair(x,y)
#define pii pair<int,int>
#define pLL pair<long long ,long long>
#define rep(i,j,k) for(int i = j; i < k;i++) using namespace std; const int INF = 0x3f3f3f3f; const int N = 500;
int g[N][N];
int cx[N],cy[N];
int mark[N];
int nx,ny; int dfs(int u)
{
rep(v,0,ny)
{
if(g[u][v]&&!mark[v])//u和v不要搞反了
{
mark[v]=1;
if(cy[v]==-1||dfs(cy[v]))
{
cx[u]=v;
cy[v]=u;
return 1;
}
}
}
return 0;
}
int maxmatch()
{
int res=0;
memset(cx,-1,sizeof(cx));
memset(cy,-1,sizeof(cy));
rep(i,0,nx)
{
if(cx[i]==-1)
{
memset(mark,0,sizeof(mark));
res+=dfs(i);
}
}
// rep(i,0,nx){
// printf("cx[%d] = %d\n",i,cx[i]);
// printf("cy[%d] = %d\n",i,cy[i]);
// }
return res;
} int a[N][N],b[N][N];
char s[N][N];
int main(){
int n,m;
while(scanf("%d %d",&n,&m)!=EOF){
memset(g,0,sizeof(g));
rep(i,0,n) scanf("%s",s[i]);
int cnt = 0;
rep(i,0,n)
rep(j,0,m){
if(s[i][j]=='*'){
if(i==0 || s[i-1][j]=='.')
a[i][j] = cnt++;
else a[i][j] = a[i-1][j];
}
}
nx = cnt;
cnt = 0;
rep(i,0,n)
rep(j,0,m){
if(s[i][j] == '*'){
if(j==0 || s[i][j-1]=='.')
b[i][j] = cnt++;
else b[i][j] = b[i][j-1];
g[a[i][j]][b[i][j]] = 1;
}
}
ny = cnt;
// rep(i,0,nx){
// rep(j,0,ny)
// printf("g[%d][%d]=%d ",i,j,g[i][j]);
// printf("\n");
// } printf("%d\n",maxmatch());
}
return 0;
}

附上我的 最大流写法。

//tpl
//ipqhjjybj_tpl.h
//header.h
#include <cstdio>
#include <cstdlib>
#include <map>
#include <set>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <vector>
#include <string> #define mp(x,y) make_pair(x,y)
#define pii pair<int,int>
#define pLL pair<long long ,long long>
#define rep(i,j,k) for(int i = j; i < k;i++) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1111;
int tot;
int s,t;
int sum;
struct node{
int u,v,w,next;
node(){}
node(int _u,int _v,int _w,int _next){
u=_u,v=_v,w=_w,next=_next;
}
}edge[N*N];
int head[N],cur[N],dis[N];
int pre[N],gap[N],aug[N];
const int oo=0x3f3f3f;
void addEdge(int u,int v,int w){
edge[tot]=node(u,v,w,head[u]);
head[u]=tot++;
edge[tot]=node(v,u,0,head[v]);
head[v]=tot++;
} int SAP(int s,int e,int n){
int max_flow=0,v,u=s;
int id,mindis;
aug[s]=oo;
pre[s]=-1;
memset(dis,0,sizeof(dis));
memset(gap,0,sizeof(gap));
gap[0]=n; for(int i=0;i <= n;i++)
cur[i]=head[i]; while(dis[s]<n){
if(u==e){
max_flow += aug[e];
for(v=pre[e]; v!=-1; v=pre[v]){
int ed=cur[v];
edge[ed].w -= aug[e];
edge[ed^1].w += aug[e];
aug[v]-=aug[e];
if(edge[ed].w==0) u=v;
}
}
bool flag=false;
for(id=cur[u]; id!=-1;id=edge[id].next){
v=edge[id].v;
if(edge[id].w > 0 && dis[u]==dis[v]+1){
flag=true;
pre[v]=u;
cur[u]=id;
aug[v]=min(aug[u],edge[id].w);
u=v;
break;
}
}
if(flag==false){
if(--gap[dis[u]] == 0) break;
int mindis=n;
for(id=head[u]; id!=-1; id=edge[id].next){
v=edge[id].v;
if(edge[id].w>0 && dis[v] < mindis){
mindis = dis[v];
cur[u]=id;
}
}
dis[u] = mindis + 1;
gap[dis[u]]++;
if(u!=s)u=pre[u];
}
}
return max_flow;
} int a[N][N],b[N][N];
char ss[N][N];
int main(){
int n,m;
while(scanf("%d %d",&n,&m)!=EOF){
tot=sum=s=0;
int tc=0;
memset(head,-1,sizeof(head)); rep(i,0,n) scanf("%s",ss[i]);
int cnt = 0;
t = ++cnt;
rep(i,0,n)
rep(j,0,m){
if(ss[i][j]=='*'){
if(i==0 || ss[i-1][j]=='.')
a[i][j] = ++cnt , addEdge(s,a[i][j],1);
else a[i][j] = a[i-1][j];
}
} rep(i,0,n)
rep(j,0,m){
if(ss[i][j] == '*'){ if(j==0 || ss[i][j-1]=='.')
b[i][j] = ++cnt ,addEdge(b[i][j],t,1);
else b[i][j] = b[i][j-1];
//g[a[i][j]][b[i][j]] = 1;
addEdge(a[i][j],b[i][j],1); }
} printf("%d\n",SAP(s,t,cnt+1));
}
return 0;
}

poj 2226 二分图 最小点覆盖 , 最大流的更多相关文章

  1. Asteroids POJ - 3041 二分图最小点覆盖

       Asteroids POJ - 3041 Bessie wants to navigate her spaceship through a dangerous asteroid field in ...

  2. [POJ] 2226 Muddy Fields(二分图最小点覆盖)

    题目地址:http://poj.org/problem?id=2226 二分图的题目关键在于建图.因为“*”的地方只有两种木板覆盖方式:水平或竖直,所以运用这种方式进行二分.首先按行排列,算出每个&q ...

  3. 二分图 最小点覆盖 poj 3041

    题目链接:Asteroids - POJ 3041 - Virtual Judge  https://vjudge.net/problem/POJ-3041 第一行输入一个n和一个m表示在n*n的网格 ...

  4. 二分图最小点覆盖构造方案+König定理证明

    前言 博主很笨 ,如有纰漏,欢迎在评论区指出讨论. 二分图的最大匹配使用 \(Dinic\) 算法进行实现,时间复杂度为 \(O(n\sqrt{e})\),其中, \(n\)为二分图中左部点的数量, ...

  5. POJ2226 Muddy Fields(二分图最小点覆盖集)

    题目给张R×C的地图,地图上*表示泥地..表示草地,问最少要几块宽1长任意木板才能盖住所有泥地,木板可以重合但不能盖住草地. 把所有行和列连续的泥地(可以放一块木板铺满的)看作点且行和列连续泥地分别作 ...

  6. POJ1325 Machine Schedule(二分图最小点覆盖集)

    最小点覆盖集就是在一个有向图中选出最少的点集,使其覆盖所有的边. 二分图最小点覆盖集=二分图最大匹配(二分图最大边独立集) 这题A机器的n种模式作为X部的点,B机器的m种模式作为Y部的点: 每个任务就 ...

  7. hihoCoder #1127:二分图最小点覆盖和最大独立集

    题目大意:求二分图最小点覆盖和最大独立集. 题目分析:如果选中一个点,那么与这个点相连的所有边都被覆盖,使所有边都被覆盖的最小点集称为最小点覆盖,它等于最大匹配:任意两个点之间都没有边相连的最大点集称 ...

  8. POJ 3041 Asteroids (最小点覆盖集)

    题意 给出一个N*N的矩阵,有些格子上有障碍,要求每次消除一行或者一列的障碍,最少消除多少次可以全部清除障碍. 思路 把关键点取出来:一个障碍至少需要被它的行或者列中的一个消除. 也许是最近在做二分图 ...

  9. HihoCoder1127 二分图三·二分图最小点覆盖和最大独立集

    二分图三·二分图最小点覆盖和最大独立集 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上次安排完相亲之后又过了挺长时间,大家好像都差不多见过面了.不过相亲这个事不是说 ...

随机推荐

  1. VS2010发布网站

  2. C语言内存分析

    C语言内存分析 一.进制 概念:进制是一种计数方式,是数值的表现形式 4种主要的进制: ①. 十进制:0~9 ②. 二进制:0和1 ③. 八进制:0~7 ④. 十六进制:0~9+a b c d e f ...

  3. 游戏编程之Unity常用脚本类的继承关系

    前言学习Unity开发引擎的初学者会接触大量的脚本类,而这些类之间的关系往往容易被忽略.本文对Unity引擎开发中的一些常用类及其关系进行了简单的归纳总结. 博文首发地址:http://tieba.b ...

  4. python笔记2-冒泡排序

    前言 面试的时候经常有面试官喜欢问如何进行冒泡排序?这个问题相信能难倒一批英雄好汉,本篇就详细讲解如何用python进行冒泡排序. 一.基本原理 1.概念: 冒泡排序(Bubble Sort),是一种 ...

  5. struts2必要的包

    想正常使用struts2.1.6,至少需要如下6 个jar包: struts2-core-2.1.6.jar freemarker-2.3.13.jar commons-logging-1.0.4.j ...

  6. C++中模板单例的跨SO(DLL)问题:RTTI,typeid,static,单例

    (转载请注明原创于潘多拉盒子) C++的模板可以帮助我们编写适合不同类型的模板类,给代码的复用性提供了极大的方便.近来写了一个涉及单例的C++模板类,简化下来可以归结为以下的代码: template ...

  7. NFV/SDN驱动OSS转型

  8. 卡方检验(Chi-square test/Chi-Square Goodness-of-Fit Test)

    什么是卡方检验 卡方检验是一种用途很广的计数资料的假设检验方法.它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析.其根本思想就是在于比较理论频数和实际频数 ...

  9. 混沌数学之Standard模型

    相关软件混沌数学之离散点集图形DEMO 相关代码: class StandardEquation : public DiscreteEquation { public: StandardEquatio ...

  10. WhyEngine游戏合集2014贺岁版

    WhyEngine游戏合集2014贺岁版 自去年9月份开始写我的第一个小游戏,到现在为止,共实现了14个小游戏,10个屏保程序,7个DEMO程序.开发环境是VS2008,渲染使用的是D3D,所有代码都 ...