LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci 题解
如果之前推过斐波那契数列前缀和就更好做(所以题目中给出了)。
先来推一下斐波那契数列前缀和:
\]
其中 \(f(i)\) 表示Fibonacci数列第 \(i\) 项。
直接推式子:
记 \(s(x)=\sum\limits_{i=1}^xf(i)\)
将右边一项项展开得出
\]
\]
\]
\]
\]
\]
这些式子左右两边分别再加回去得出
\]
把其中一个 \(1\) 变成 \(f(1)\) 再和另一个 \(f(1)\) 加到 \(2*\sum\limits_{i=2}^{n-2}f(i)\) 里面,得出
\]
\]
\]
\]
\]
\]
令 \(n-2\) 变成 \(n\) 可得
\(s(n)=f(n+2)-1\)
注意到 \(f\) 是可以直接矩阵快速幂求的。这个时候就可以在 \(\mathcal{O}(\log n)\) 的时间复杂度求得 \(s(n)\) 了。
这个时候回来看本题:
对于 \(T(n)\) 来说,\(f(n)\) 被计算了 \(n\) 次,\(f(n-1)\) 被计算了 \((n-1)\) 次...
即
\]
可以用后缀和的形式来表示这个式子,计 \(s2(i)=\sum\limits_{i=1}^n{f(i)}\)
所以上面的式子可以进一步转化成这个后缀和的形式
\]
可是 \(n\) 又不确定,又不会推后缀和,应该怎么求呢?
不会后缀和,但是我们会前缀和啊!
用 \(s\) 表示上述式子即为
\]
把 \(s(n)\) 提出来:
\]
代入 \(s(i)=f(i+2)-1\)
\]
把 \(\sum\) 里面的 \(-1\) 提出来
\]
之后就很简单了。
\]
\]
\]
化简一下
\]
\]
\]
矩阵快速幂求 \(f(n+2)\) 和 \(f(n+3)\) 就能 \(\mathcal{O}(\log n)\) 的时间复杂度求出 \(T(n)\) 了。
因为最后的式子里面有个减法,可以提前在减法之前加上一个 \(m\) 来防止负数取模的情况发生。
参考 \(\mathcal{Code}\)
#include<iostream>
#include<cstdio>
#define ll long long
int n,m;
struct Matrix {
ll mat[3][3];
int n,m;
void memset() {
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
mat[i][j]=0;
}
};
Matrix mul(Matrix x,Matrix y)
{
Matrix z;
z.n=x.n;
z.m=y.m;
z.memset();
for(int i=1;i<=z.n;i++)
for(int j=1;j<=z.m;j++)
for(int k=1;k<=x.m;k++)
z.mat[i][j]=(z.mat[i][j]+x.mat[i][k]*y.mat[k][j])%m;
return z;
}
Matrix qpow(Matrix base,int y)
{
Matrix ans;
ans.n=ans.m=2;
ans.memset();
for(int i=1;i<=2;i++)
ans.mat[i][i]=1;
while(y)
{
if(y&1) ans=mul(ans,base);
base=mul(base,base);
y>>=1;
}
return ans;
}
ll f(int n)
{
Matrix ans,base;
ans.n=1;
ans.m=2;
base.n=base.m=2;
ans.memset();
base.memset();
ans.mat[1][1]=1;ans.mat[1][2]=1;
base.mat[1][1]=0;base.mat[1][2]=1;
base.mat[2][1]=1;base.mat[2][2]=1;
base=qpow(base,n-2);
ans=mul(ans,base);
return ans.mat[1][2];
}
int main()
{
scanf("%d%d",&n,&m);
printf("%lld",(n*f(n+2)%m-f(n+3)+m+2)%m);
return 0;
}
LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci 题解的更多相关文章
- LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci
题目链接 题目大意 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$ $$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$ 求$T[n] ...
- LOJ#10064. 「一本通 3.1 例 1」黑暗城堡
LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...
- LOJ #10131 「一本通 4.4 例 2」暗的连锁
LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...
- Loj 10115 「一本通 4.1 例 3」校门外的树 (树状数组)
题目链接:https://loj.ac/problem/10115 题目描述 原题来自:Vijos P1448 校门外有很多树,学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的 ...
- LOJ#10065. 「一本通 3.1 例 2」北极通讯网络
题目链接:https://loj.ac/problem/10065 题目描述 原题来自:Waterloo University 2002 北极的某区域共有 nnn 座村庄,每座村庄的坐标用一对整数 ( ...
- LOJ#10106. 「一本通 3.7 例 2」单词游戏
题目链接:https://loj.ac/problem/10106 题目描述 来自 ICPC CERC 1999/2000,有改动. 有 NNN 个盘子,每个盘子上写着一个仅由小写字母组成的英文单词. ...
- LOJ #10132. 「一本通 4.4 例 3」异象石
题目地址 LOJ 题解 神仙思路.思路参考自<算法竞赛进阶指南>. 考虑维护dfs序中相邻两个石头的距离,那么每次?的答案就是sum/2(首尾算相邻) 然后维护一下拿个平衡树/set维护一 ...
- LOJ 10138 -「一本通 4.5 例 1」树的统计
树链剖分模板题,详见这篇博客.
- LOJ 10155 - 「一本通 5.2 例 3」数字转换
前言 从现在开始,这个博客要写一些题解了.起初,开这个博客只是好玩一样,没事就写写CSS.JS,然后把博客前端搞成了现在这个样子.以前博客只是偶尔记录一些东西,刷题也从来不记录,最近受一些学长的影响, ...
随机推荐
- mysql自连接和外连接知识点及相关案例
#三.自连接 #查询员工的名字.上级的名字 SELECT e.last_name, m.last_name FROM employees e JOIN employees m ON e.manager ...
- 常用js代码片段(一)
1.如果数组所有元素都满足函数条件,则返回true.调用时,如果省略第二个参数,则默认传递布尔值. const all= (arr, fn=Boolean) => arr.every(fn); ...
- 在Linux下安装zotero
背景 系统:deepin15 zotero5.0 本来deepin的商店里是有zotero的,但貌似商店里的太老了,安装完打开之后什么功能都不能用,点击按钮没有反应.无奈之下,只能手动安装了 网上的教 ...
- WPF基于.Net Core
WPF基于.Net Core 因为最近.net core的热门,所以想实现一下.net core框架下的WPF项目,还是MVVM模式,下面就开始吧,简单做一个计算器吧. 使用VS2019作为开发工具 ...
- Scala 基础(十):Scala 函数式编程(二)基础(二)过程、惰性函数、异常
1 过程 将函数的返回类型为Unit的函数称之为过程(procedure),如果明确函数没有返回值,那么等号可以省略 注意事项和细节说明 1)注意区分: 如果函数声明时没有返回值类型,但是有 = 号, ...
- shell专题(三):Shell脚本入门
1.脚本格式 脚本以#!/bin/bash开头(指定解析器) 2.第一个Shell脚本:helloworld (1)需求:创建一个Shell脚本,输出helloworld (2)案例实操: [atgu ...
- python数据处理(一)之供机器读取的数据 csv,json,xml
代码与资料 https://github.com/jackiekazil/data-wrangling 1 csv 1.1导入csv数据 1.2将代码保存到文件中并在命令行中运行 2.json 2 导 ...
- Python 为什么只需一条语句“a,b=b,a”,就能直接交换两个变量?
从接触 Python 时起,我就觉得 Python 的元组解包(unpacking)挺有意思,非常简洁好用. 最显而易见的例子就是多重赋值,即在一条语句中同时给多个变量赋值: >>> ...
- 乌班图16 配置nginx
阿里云 乌班图16 安装ngnix sudo apt install nginx nginx 启动 重启 关闭 sudo service nginx start restart stop status ...
- 性能测试必备知识(5)- 深入理解“CPU 上下文切换”
做性能测试的必备知识系列,可以看下面链接的文章哦 https://www.cnblogs.com/poloyy/category/1806772.html 前言 上一篇文章中,举例了大量进程等待 CP ...