LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci 题解
如果之前推过斐波那契数列前缀和就更好做(所以题目中给出了)。
先来推一下斐波那契数列前缀和:
\]
其中 \(f(i)\) 表示Fibonacci数列第 \(i\) 项。
直接推式子:
记 \(s(x)=\sum\limits_{i=1}^xf(i)\)
将右边一项项展开得出
\]
\]
\]
\]
\]
\]
这些式子左右两边分别再加回去得出
\]
把其中一个 \(1\) 变成 \(f(1)\) 再和另一个 \(f(1)\) 加到 \(2*\sum\limits_{i=2}^{n-2}f(i)\) 里面,得出
\]
\]
\]
\]
\]
\]
令 \(n-2\) 变成 \(n\) 可得
\(s(n)=f(n+2)-1\)
注意到 \(f\) 是可以直接矩阵快速幂求的。这个时候就可以在 \(\mathcal{O}(\log n)\) 的时间复杂度求得 \(s(n)\) 了。
这个时候回来看本题:
对于 \(T(n)\) 来说,\(f(n)\) 被计算了 \(n\) 次,\(f(n-1)\) 被计算了 \((n-1)\) 次...
即
\]
可以用后缀和的形式来表示这个式子,计 \(s2(i)=\sum\limits_{i=1}^n{f(i)}\)
所以上面的式子可以进一步转化成这个后缀和的形式
\]
可是 \(n\) 又不确定,又不会推后缀和,应该怎么求呢?
不会后缀和,但是我们会前缀和啊!
用 \(s\) 表示上述式子即为
\]
把 \(s(n)\) 提出来:
\]
代入 \(s(i)=f(i+2)-1\)
\]
把 \(\sum\) 里面的 \(-1\) 提出来
\]
之后就很简单了。
\]
\]
\]
化简一下
\]
\]
\]
矩阵快速幂求 \(f(n+2)\) 和 \(f(n+3)\) 就能 \(\mathcal{O}(\log n)\) 的时间复杂度求出 \(T(n)\) 了。
因为最后的式子里面有个减法,可以提前在减法之前加上一个 \(m\) 来防止负数取模的情况发生。
参考 \(\mathcal{Code}\)
#include<iostream>
#include<cstdio>
#define ll long long
int n,m;
struct Matrix {
ll mat[3][3];
int n,m;
void memset() {
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
mat[i][j]=0;
}
};
Matrix mul(Matrix x,Matrix y)
{
Matrix z;
z.n=x.n;
z.m=y.m;
z.memset();
for(int i=1;i<=z.n;i++)
for(int j=1;j<=z.m;j++)
for(int k=1;k<=x.m;k++)
z.mat[i][j]=(z.mat[i][j]+x.mat[i][k]*y.mat[k][j])%m;
return z;
}
Matrix qpow(Matrix base,int y)
{
Matrix ans;
ans.n=ans.m=2;
ans.memset();
for(int i=1;i<=2;i++)
ans.mat[i][i]=1;
while(y)
{
if(y&1) ans=mul(ans,base);
base=mul(base,base);
y>>=1;
}
return ans;
}
ll f(int n)
{
Matrix ans,base;
ans.n=1;
ans.m=2;
base.n=base.m=2;
ans.memset();
base.memset();
ans.mat[1][1]=1;ans.mat[1][2]=1;
base.mat[1][1]=0;base.mat[1][2]=1;
base.mat[2][1]=1;base.mat[2][2]=1;
base=qpow(base,n-2);
ans=mul(ans,base);
return ans.mat[1][2];
}
int main()
{
scanf("%d%d",&n,&m);
printf("%lld",(n*f(n+2)%m-f(n+3)+m+2)%m);
return 0;
}
LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci 题解的更多相关文章
- LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci
题目链接 题目大意 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$ $$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$ 求$T[n] ...
- LOJ#10064. 「一本通 3.1 例 1」黑暗城堡
LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...
- LOJ #10131 「一本通 4.4 例 2」暗的连锁
LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...
- Loj 10115 「一本通 4.1 例 3」校门外的树 (树状数组)
题目链接:https://loj.ac/problem/10115 题目描述 原题来自:Vijos P1448 校门外有很多树,学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的 ...
- LOJ#10065. 「一本通 3.1 例 2」北极通讯网络
题目链接:https://loj.ac/problem/10065 题目描述 原题来自:Waterloo University 2002 北极的某区域共有 nnn 座村庄,每座村庄的坐标用一对整数 ( ...
- LOJ#10106. 「一本通 3.7 例 2」单词游戏
题目链接:https://loj.ac/problem/10106 题目描述 来自 ICPC CERC 1999/2000,有改动. 有 NNN 个盘子,每个盘子上写着一个仅由小写字母组成的英文单词. ...
- LOJ #10132. 「一本通 4.4 例 3」异象石
题目地址 LOJ 题解 神仙思路.思路参考自<算法竞赛进阶指南>. 考虑维护dfs序中相邻两个石头的距离,那么每次?的答案就是sum/2(首尾算相邻) 然后维护一下拿个平衡树/set维护一 ...
- LOJ 10138 -「一本通 4.5 例 1」树的统计
树链剖分模板题,详见这篇博客.
- LOJ 10155 - 「一本通 5.2 例 3」数字转换
前言 从现在开始,这个博客要写一些题解了.起初,开这个博客只是好玩一样,没事就写写CSS.JS,然后把博客前端搞成了现在这个样子.以前博客只是偶尔记录一些东西,刷题也从来不记录,最近受一些学长的影响, ...
随机推荐
- How many ways??,题解
题目: 题意: 找过k条边的路径个数. 分析: 首先注意一下题意,同一个点过两次算两次,做过类似的,过k条边的最短路,只要搞一个矩阵,然后快速幂就好了,这个也一样,维护信息变一下,然后就好了. 如果k ...
- ASP.NET基础温习
- Flask 上下文机制和线程隔离
1. 计算机科学领域的任何问题都可以通过增加一个间接的中间层来解决, 上下文机制就是这句话的体现. 2. 如果一次封装解决不了问题,那就再来一次 上下文:相当于一个容器,保存了Flask程序运行过程中 ...
- USTC信息安全期末重点
一.ARP协议问题1. ARP协议的作用是什么.地址解析协议,即IP地址和MAC地址之间的转换. 2. 引入ARP缓存的功能是什么.将这一映射关系保存在 ARP 缓存中,使得不必重复运行 ARP 协议 ...
- CSS(二)- 选择器 - 伪元素和伪类(思维导图)
伪元素 伪元素可以创建一些文档语言无法创建的虚拟元素.比如:文档语言没有一种机制可以描述元素内容的第一个字母或第一行,但伪元素可以做到(::first-letter.::first-line).同时, ...
- Mysql基础(五):多表查询、pymysql模块
目录 数据库04 /多表查询.pymysql模块 1. 笛卡尔积 2. 连表查询 3. 子查询 4. pymysql模块 数据库04 /多表查询.pymysql模块 1. 笛卡尔积 将两表所有的数据一 ...
- T4 分配时间 题解
问题描述 小王参加的考试是几门科目的试卷放在一起考,一共给 t 分钟来做.他现在已经知道每 门科目花的时间和得到的分数的关系,还有写名字要的时间(他写自己的名字很慢)请帮他 算一下他最高能得几分.总分 ...
- VS code 的集成终端Integrated terminal 的颜色问题
其实是默认终端的配色问题在使用vs code时,运行代码时,控制台是这样子的,搞得我很难受 一块一块的 其实是默认终端的配色问题 默认终端一般是powershell,还可以是cmd,或者git bas ...
- Python 什么时候会被取代?
以下是译文: Python经过了几十年的努力才得到了编程社区的赏识.自2010年以来,Python得到了蓬勃发展,并最终超越了C.C#.Java和JavaScript. 但是,这种趋势将持续到什么 ...
- Android Studio报错问题集锦
Android Studio使用过程中坑太多,动不动就报错,每次出现问题都是上百度去搜索,需要花费很大的时间和精力才能解决掉问题. 为了以后更高效的使用这款工具,在这里记录下来我已经踩过的坑和即将要踩 ...