import numpy as np
np.random.randint(0,49,3)

# -*- coding:utf-8 -*-
import keras
from keras.models import Sequential
from keras.layers import Dense,Activation
from keras.layers import Convolution2D,MaxPooling2D,Flatten
from keras.optimizers import Adam,Adadelta
from keras.utils import np_utils #utilities
import matplotlib.pyplot as plt
%matplotlib inline

####引用CIFAR10的数据集
from keras.datasets import cifar10
(train_x,train_y),(test_x,test_y)=cifar10.load_data()

print(train_x.shape,train_y.shape,test_x.shape,test_y.shape)

##把训练的目标值转为one-hot编码
# 1->(0,1,0,0,0,0,0,0,0,0)
n_classes=10
train_Y=keras.utils.to_categorical(train_y,n_classes)
test_Y=keras.utils.to_categorical(test_y,n_classes)

print(train_Y.shape,test_Y.shape)

### visualization
###显示训练数据集train_x(50000,32,32,3)中的前64张图像,
##显示成8*8的形式,并且加入title(label:Truth type)

plt.figure(figsize=(15,15))###显示的每张图像为15*15大小
for i in range(64):
plt.subplot(8,8,(i+1))
plt.imshow(train_x[i])
plt.title("label:{0}".format(train_y[i]))
plt.axis('off')
plt.show()

## 1.构造CNN,分为3层,
# #1(kernel=3*3*32,s=1,p='same',acti='relu')
# #1(pool_size=2,s=2,p='same')
# #1 Dropout(0.2)

# #2(kernel=3*3*64,s=1,p='same',acti='relu')
# #2(pool_size=2,s=2,p='same')
# #2 Dropout(0.2)

# #1(kernel=3*3*128,s=1,p='same',acti='relu')
# #1(pool_size=2,s=2,p='same')
# #2 Dropout(0.2)

from keras.layers import Dropout
model=Sequential()
##layer 1
model.add(Convolution2D(filters=32,kernel_size=(3,3),input_shape=(32,32,3),strides=(1,1),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding='same'))
model.add(Dropout(0.2))

##layer 2
model.add(Convolution2D(filters=64,kernel_size=(3,3),strides=(1,1),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding='same'))
model.add(Dropout(0.2))

##layer 3
model.add(Convolution2D(filters=128,kernel_size=(3,3),strides=(1,1),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding='same'))
model.add(Flatten())
model.add(Dropout(0.2))

### Fully connected layer 1
model.add(Dense(units=128,activation='relu'))
model.add(Dropout(0.5))

### Fully connected layer 2
model.add(Dense(units=256,activation='relu'))
model.add(Dropout(0.5))

### Fully connected layer 3
model.add(Dense(units=n_classes,activation='softmax'))

## conpile
model.compile(optimizer=Adadelta(),loss='categorical_crossentropy',metrics=['accuracy'])

model.summary()

import time
s_time=time.time()
model.fit(train_x,train_Y,epochs=30,batch_size=256,verbose=1)
e_time=time.time()
print("running time%.4f"%(e_time-s_time))

e=model.evaluate(test_x,test_Y,batch_size=256,verbose=1)
print("loss:%.4f"%(e[0]),"accuracy:%.4f"%(e[1]))

from keras.models import load_model
model.save("cifar10_30.h5")###you should install pyh5
del model # deletes the existing model
model.predict(test_x[0],batch_size=1,verbose=0)##报错
##加载模型
model=load_model("cifar10_30.h5")
test_img=test_x[0][np.newaxis,:]
model.predict_classes(test_img,batch_size=1,verbose=0)
#test_img.shape
test_y[0]

吴裕雄 python神经网络(7)的更多相关文章

  1. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  2. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  3. 吴裕雄 python神经网络 手写数字图片识别(5)

    import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...

  4. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  5. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  6. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  7. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  8. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  9. 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用

    #训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  10. 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

随机推荐

  1. mysql视图 触发器 事物 函数 存储过程

    一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...

  2. CS229 1 .线性回归与特征归一化(feature scaling)

    线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题 ...

  3. 《Linux 性能及调优指南》1.4 硬盘I/O子系统

    翻译:飞哥 (http://hi.baidu.com/imlidapeng) 版权所有,尊重他人劳动成果,转载时请注明作者和原始出处及本声明. 原文名称:<Linux Performance a ...

  4. json与bson的区别

    bson是由10gen开发的一个数据格式,目前主要用于mongoDB中,是mongoDB的数据存储格式.bson基于json格式,选择json进行改造的原因主要是json的通用性及json的schem ...

  5. java与xml转换 -- XStreamAlias

    @XStreamAlias 1.特点 简化的API; 无映射文件; 高性能,低内存占用; 整洁的XML; 不需要修改对象;支持内部私有字段,不需要setter/getter方法 提供序列化接口; 自定 ...

  6. 《算法》第五章部分程序 part 4

    ▶ 书中第五章部分程序,包括在加上自己补充的代码,Trie 树类,Trie 集合,三值搜索树(Ternary Search Trie) ● Trie 树类 package package01; imp ...

  7. python中的pop

    pop()将列表指定位置的元素移除,同时可以将移除的元素赋值给某个变量,不填写位置参数则默认删除最后一位 pop()根据键将字典中指定的键值对删除,同时可以将删除的值赋值给变量 举个例子: 1 a = ...

  8. .bat脚本基本命令语法 http://www.cnblogs.com/iTlijun/p/6137027.html

    这个是我找到的非常好的一篇文章了: 目录批处理的常见命令(未列举的命令还比较多,请查阅帮助信息)     1.REM 和 ::     2.ECHO 和 @     3.PAUSE     4.ERR ...

  9. .Net MVC 身份验证

    .Net身份验证主要是分为三种 Windows | Forms | Passport ,其中Froms在项目中用的最多. Windows 身份验证 Forms 验证 Passport 验证 1.Win ...

  10. xsync

    shell  小工具,用于集群搭建: xsync脚本基于rsync工具,rsync 远程同步工具,主要用于备份和镜像.具有速度快.避免复制相同内容和支持符号链接的优点,它只是拷贝文件不同的部分,因而减 ...