吴裕雄 python神经网络(8)

# -*- coding=utf-8 -*-
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense,Flatten,Dropout
from keras.optimizers import Adadelta
from keras.datasets import cifar10
from keras import applications
import matplotlib.pyplot as plt
%matplotlib inline
vgg_model=applications.VGG19(include_top=False,weights='imagenet')
vgg_model.summary()

(train_x,train_y),(test_x,test_y)=cifar10.load_data()
print(train_x.shape,train_y.shape,test_x.shape,test_y.shape)


n_classes=10
train_y=keras.utils.to_categorical(train_y,n_classes)
test_y=keras.utils.to_categorical(test_y,n_classes)

bottleneck_feature_train=vgg_model.predict(train_x,verbose=1)
bottleneck_feature_test=vgg_model.predict(test_x,verbose=1)

print(bottleneck_feature_train.shape,bottleneck_feature_test.shape)

my_model=Sequential()
my_model.add(Flatten())###my_model.add(Flatten(input_shape=?))
my_model.add(Dense(512,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(256,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(n_classes,activation='softmax'))
my_model.compile(optimizer=Adadelta(),loss="categorical_crossentropy",\
metrics=['accuracy'])
my_model.fit(bottleneck_feature_train,train_y,batch_size=128,epochs=50,verbose=1)

evaluation=my_model.evaluate(bottleneck_feature_test,test_y,batch_size=128,verbose=0)
print("loss:",evaluation[0],"accuracy:",evaluation[1])

def predict_label(img_idx,show_proba=True):
plt.imshow(train_x[img_idx],aspect='auto')
plt.title("Image to be labeled")
plt.show()
img_4D=(bottleneck_feature_train[img_idx])[np.newaxis,:,:,:]
prediction=my_model.predict_classes(img_4D,batch_size=1,verbose=0)
print("Actual class:{0}\nPredict class:{1}".format(np.argmax(train_y[img_idx],0),prediction))
if show_proba:
pred=my_model.predict_proba(img_4D,batch_size=1,verbose=0)
print(pred)
for i in range(3):
predict_label(i,show_proba=True)

吴裕雄 python神经网络(8)的更多相关文章
- 吴裕雄 python神经网络 花朵图片识别(10)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 花朵图片识别(9)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 手写数字图片识别(5)
import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...
- 吴裕雄 python神经网络 水果图片识别(4)
# coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...
- 吴裕雄 python神经网络 水果图片识别(3)
import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...
- 吴裕雄 python神经网络 水果图片识别(2)
import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...
- 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...
- 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...
- 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...
- 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
随机推荐
- 《Linux性能及调优指南》第二章:监控和基准工具2.1-2.2
翻译:飞哥 (http://hi.baidu.com/imlidapeng) 版权所有,尊重他人劳动成果,转载时请注明作者和原始出处及本声明. 原文名称:<Linux Performance a ...
- RecyclerView.Adapter封装,最简单实用的BaseRecyclerViewAdapter;只需重写一个方法,设置数据链式调用;
之前对ListView的BaseAdapter进行过封装,只需重写一个getView方法: 现在慢慢的RecyclerView成为主流,下面是RecyclerView.Adapter的封装: Base ...
- 了解Python内存管理机制,让你的程序飞起来
引用: 语言的内存管理是语言设计的一个重要方面.它是决定语言性能的重要因素.无论是C语言的手工管理,还是Java的垃圾回收,都成为语言最重要的特征.这里以Python语言为例子,说明一门动态类型的.面 ...
- Jquery,全选,反选,
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- threading的join功能
you can go here to see the details. 我的理解:使用join后,使主线程执行完后(挂起),子线程再执行完后,主线程才结束.否则主线程会直接结束导致子线程不会执行. i ...
- 使用docker生成centos7系统
因为缺乏系统,所以使用docker镜像模拟生成多个系统,用于练习集群的安装. 查看已有镜像 docker images 下载镜像: docker pull centos: docker pull 镜 ...
- My sql 自增 虚拟列。
在MYSQL 是没有类似MSSQL 2008 / oracle 数据库开窗函数 over() ,rank(), DENSE_RANK() ,ROW_NUMBER() 又叫窗口函数 . 当我们需要在查询 ...
- pythoner国内比较快 的 镜像源
pythoner国内比较快 的 镜像源 pip install pyqt5 = 5.9 -i https://pipy pip使用过程中的痛苦,大家相必都已经知道了,目前豆瓣提供了国内的pypi源, ...
- mysql decode encode 乱码问题
帮网友解决了一个问题,感觉还是挺好的. 问题是这样的: 问个问题:为什么我mysql中加密和解密出来的字段值不一样?AES_ENCRYPT和 AES_DECRYPT 但是解密出来就不对了 有时候 ...
- Android权限管理
使用系统权限 为了保护系统的完整性和用户隐私权,Android 在访问受限的沙盒中运行每款应用.如果应用需要使用其沙盒以外的资源或信息,则必须明确请求权限.根据应用请求的权限类型,系统可能会自动授予权 ...