# -*- coding=utf-8 -*-
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense,Flatten,Dropout
from keras.optimizers import Adadelta
from keras.datasets import cifar10
from keras import applications

import matplotlib.pyplot as plt
%matplotlib inline

vgg_model=applications.VGG19(include_top=False,weights='imagenet')
vgg_model.summary()

(train_x,train_y),(test_x,test_y)=cifar10.load_data()
print(train_x.shape,train_y.shape,test_x.shape,test_y.shape)

n_classes=10
train_y=keras.utils.to_categorical(train_y,n_classes)
test_y=keras.utils.to_categorical(test_y,n_classes)

bottleneck_feature_train=vgg_model.predict(train_x,verbose=1)
bottleneck_feature_test=vgg_model.predict(test_x,verbose=1)

print(bottleneck_feature_train.shape,bottleneck_feature_test.shape)

my_model=Sequential()
my_model.add(Flatten())###my_model.add(Flatten(input_shape=?))
my_model.add(Dense(512,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(256,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(n_classes,activation='softmax'))
my_model.compile(optimizer=Adadelta(),loss="categorical_crossentropy",\
metrics=['accuracy'])
my_model.fit(bottleneck_feature_train,train_y,batch_size=128,epochs=50,verbose=1)

evaluation=my_model.evaluate(bottleneck_feature_test,test_y,batch_size=128,verbose=0)
print("loss:",evaluation[0],"accuracy:",evaluation[1])

def predict_label(img_idx,show_proba=True):
plt.imshow(train_x[img_idx],aspect='auto')
plt.title("Image to be labeled")
plt.show()
img_4D=(bottleneck_feature_train[img_idx])[np.newaxis,:,:,:]
prediction=my_model.predict_classes(img_4D,batch_size=1,verbose=0)
print("Actual class:{0}\nPredict class:{1}".format(np.argmax(train_y[img_idx],0),prediction))

if show_proba:
pred=my_model.predict_proba(img_4D,batch_size=1,verbose=0)
print(pred)

for i in range(3):
predict_label(i,show_proba=True)

吴裕雄 python神经网络(8)的更多相关文章

  1. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  2. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  3. 吴裕雄 python神经网络 手写数字图片识别(5)

    import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers impo ...

  4. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  5. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  6. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  7. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  8. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

  9. 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用

    #训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  10. 吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

随机推荐

  1. Java - 16 Java 方法

    在前面几个章节中我们经常使用到System.out.println(),那么它是什么呢? println()是一个方法(Method),而System是系统类(Class),out是标准输出对象(Ob ...

  2. Java 3-Java 基本数据类型

    Java 基本数据类型 变量就是申请内存来存储值.也就是说,当创建变量的时候,需要在内存中申请空间. 内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据. 因此,通过定义不 ...

  3. solr 忽略大小写

    1.types标签下加入如下fieldType <fieldType name="str_lower" class="solr.TextField" so ...

  4. mysql存储过程的编写

    1.MySQL 新增存储过程,因为mysql默认以:为分隔符,该分隔符会使mysql自动执行sql语句,故需要将分隔符修改下,下面通过DELIMITER设为$$,然后编写SQL,编写完成再将:设为分隔 ...

  5. 修改之前某次commit日志和内容

    如果需要撤销最近一次提交的代码 已经commit,没有submit状态:可以使用git reset --hard HEAD^ 比如之前已经提交了五个patch,但是需要修改第三个. 第一步: 将修改的 ...

  6. css grid 网格布局

    前几天研究了一下这个布局方式,笔记待更新 先放一下学习站点 文档 我应该尝试使用CSS Grid Layout的IE实现吗 https://hacks.mozilla.org/2018/02/css- ...

  7. embsysregview 0.26 无法安装的解决方法。

    最近看到一个比较好的 eclipse 插件:embsysregview,于是想装起来用用看.结果安装过程出错,4个 jar 的包下载不下来,并且通过本地安装的方法也不行. 后来终于找到作者的回复,作者 ...

  8. NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)

    NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation) NEU:通过对高阶相似性的近似,加持快速网络 ...

  9. 学习笔记: js插件 —— fullPage.js (页面全屏滚动)

    fullPage.js (页面全屏滚动) 必须依赖 jquery-ui.min.js,   233K 14760个星. 以后有时间再看. API挺全 https://github.com/alvaro ...

  10. 转载:基于HALCON的模板匹配方法总结

    转载链接:     http://blog.csdn.net/b108074013/article/details/37657801 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总 ...