//pick定理:面积=内部整数点数+边上整数点数/2-1
// POJ 2954 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <math.h>
using namespace std;
#define LL long long
typedef pair<int,int> pii;
const double inf = 0x3f3f3f3f;
const LL MOD =100000000LL;
const int N =;
#define clc(a,b) memset(a,b,sizeof(a))
const double eps = 1e-;
void fre() {freopen("in.txt","r",stdin);}
void freout() {freopen("out.txt","w",stdout);}
inline int read() {int x=,f=;char ch=getchar();while(ch>''||ch<'') {if(ch=='-') f=-; ch=getchar();}while(ch>=''&&ch<='') {x=x*+ch-'';ch=getchar();}return x*f;} int sgn(double x){
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
} struct Point{
int x,y;
Point(){}
Point(int _x,int _y){
x = _x;y = _y;
}
Point operator -(const Point &b)const{
return Point(x - b.x,y - b.y);
}
int operator ^(const Point &b)const{
return x*b.y - y*b.x;
}
int operator *(const Point &b)const{
return x*b.x + y*b.y;
}
friend bool operator<(const Point &a,const Point &b){
if(fabs(a.y-b.y)<eps) return a.x<b.x;
return a.y<b.y;
}
}; int area(Point a,Point b,Point c){
return fabs((a-c)^(b-c));
}
//求多边形边上整点的数目,顶点必须为整数点
int fun(Point a,Point b){
int x,y;
x=abs(a.x-b.x);
y=abs(a.y-b.y);
return __gcd(x,y);
}
int main(){
// fre();
int x1,y1,x2,y2,x3,y3;
while(~scanf("%d%d%d%d%d%d",&x1,&y1,&x2,&y2,&x3,&y3),x1||x2||x3||y1||y2||y3){
int ans=area(Point(x1,y1),Point(x2,y2),Point(x3,y3));
int cnt=;
Point a,b,c;
a=Point(x1,y1);
b=Point(x2,y2);
c=Point(x3,y3);
cnt+=fun(a,b);
cnt+=fun(a,c);
cnt+=fun(b,c);
printf("%d\n",(ans-cnt)/+);
}
return ;
}

pick定理:面积=内部整数点数+边上整数点数/2-1的更多相关文章

  1. poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】

    题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...

  2. Area - POJ 1265(pick定理求格点数+求多边形面积)

    题目大意:以原点为起点然后每次增加一个x,y的值,求出来最后在多边形边上的点有多少个,内部的点有多少个,多边形的面积是多少. 分析: 1.以格子点为顶点的线段,覆盖的点的个数为GCD(dx,dy),其 ...

  3. POJ1265——Area(Pick定理+多边形面积)

    Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...

  4. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  5. 格点多边形面积公式(Pick定理)的一个形象解释(转)

    Pick定理:如果一个简单多边形(以下称为“多边形”)的每个顶点都是直角坐标平面上的格点,则称该多边形为格点多边形.若一个面积为S的格点多边形,其边界上有a个格点,内部有b个格点,则S=a/2+b-1 ...

  6. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  7. POJ 1265 Area POJ 2954 Triangle Pick定理

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5227   Accepted: 2342 Description ...

  8. poj 1265&&poj 2954(Pick定理)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5811   Accepted: 2589 Description ...

  9. 【POJ】2954 Triangle(pick定理)

    http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...

随机推荐

  1. mvp(1)简介及它与mvc区别

    注意:它们是软件架构,不是设计模式 左边mvc    右边mvp MVC和MVP的区别? MVP 是从经典的MVC架构演变而来,它们的基本思想有相通的地方:Controller/Presenter负责 ...

  2. Open_Newtonsoft_Json 的序列化和反序列化

    Newtonsoft.Json,一款.NET中开源的Json序列化和反序列化类库(下载地址http://json.codeplex.com/). 特别注明:本人转自 陈 晨 博客园的 Newtonso ...

  3. [CFGym101061G] Repeat it(逆元)

    题目链接:http://codeforces.com/gym/101061/problem/G 题意:给一个数字n,让你重复m次,求最后这个数对1e9+7取模的结果. 思路:设数字n长度为k,重复m次 ...

  4. hdu 5718 Oracle 高精度

    Oracle Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Problem ...

  5. 10.10 dos试验

    一. 实验目的 (1)认识DOS: (2)掌握命令解释程序的原理: (3)掌握简单的DOS调用方法: (4)掌握C语言编程初步. 二. 实验内容和要求 编写类似于DOS,UNIX的命令行解释程序 (1 ...

  6. 浅谈Websocket、Ajax轮询和长连接(long pull)

    最近看到了一些介绍Websocket的文章,觉得挺有用,所以在这里将自己的对其三者的理解记录一下. 1.什么是Websocket Websocket是HTML5中提出的新的协议,注意,这里是协议,可以 ...

  7. HTML网页插入图像

    一.WEB上支持的图片格式: GIF:能保存256中颜色,支持透明色,支持动画效果 JPEG:不支持透明色和动画,颜色可达1670种 PNG:支持透明色,不支持动画,颜色有几种到1670种 二.将图片 ...

  8. Qt之QHeaderView排序

    简述 在Windows中我们经常会遇到表头排序,比如可以对文件按照名称.修改日期.类型.大小进行排序,方便我们统一的归类查找. Qt中,我们可以通过点击表头来对QTableView或QTreeView ...

  9. jquery radio 取值 取消选中 赋值

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. 51nod1537 分解

    http://blog.csdn.net/qingshui23/article/details/52350523 详细题解%%%%对矩阵乘法的不熟悉.以及不会推公式 #include<cstdi ...