吴裕雄 python深度学习与实践(5)
import numpy as np data = np.mat([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]])
row = 0
for line in data:
row += 1
print(row)
print(data.size)
import numpy as np data = np.mat([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]])
print(data[0,3])
print(data[0,4])
import numpy as np data = np.mat([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]])
print(data)
col1 = []
for row in data:
print(row)
col1.append(row[0,1]) print(col1)
print(np.sum(col1))
print(np.mean(col1))
print(np.std(col1))
print(np.var(col1))
import pylab
import numpy as np
import scipy.stats as stats data = np.mat([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]]) col1 = []
for row in data:
col1.append(row[0,1]) stats.probplot(col1,plot=pylab)
pylab.show()
import pandas as pd
import matplotlib.pyplot as plot rocksVMines = pd.DataFrame([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]])
print(rocksVMines)
dataRow1 = rocksVMines.iloc[1,0:3]
dataRow2 = rocksVMines.iloc[2,0:3]
print(type(dataRow1))
print(dataRow1)
print(dataRow2)
plot.scatter(dataRow1, dataRow2)
plot.xlabel("Attribute1")
plot.ylabel("Attribute2")
plot.show() dataRow3 = rocksVMines.iloc[3,0:3]
plot.scatter(dataRow2, dataRow3)
plot.xlabel("Attribute2")
plot.ylabel("Attribute3")
plot.show()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V")
print(np.shape(dataFile))
dataRow1 = dataFile.iloc[100,1:300]
dataRow2 = dataFile.iloc[101,1:300]
plot.scatter(dataRow1, dataRow2)
plot.xlabel("Attribute1")
plot.ylabel("Attribute2")
plot.show()
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") target = []
for i in range(200):
if dataFile.iat[i,10] >= 7:
target.append(1.0)
else:
target.append(0.0) dataRow = dataFile.iloc[0:200,10]
plot.scatter(dataRow, target)
plot.xlabel("Attribute")
plot.ylabel("Target")
plot.show()
import random as rd
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") target = []
for i in range(200):
if dataFile.iat[i,10] >= 7:
target.append(1.0 + rd.uniform(-0.3, 0.3))
else:
target.append(0.0 + rd.uniform(-0.3, 0.3))
dataRow = dataFile.iloc[0:200,10]
plot.scatter(dataRow, target, alpha=0.5, s=100)
plot.xlabel("Attribute")
plot.ylabel("Target")
plot.show()
from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") print(dataFile.head())
print(dataFile.tail()) summary = dataFile.describe()
print(summary) array = dataFile.iloc[:,10:16].values
boxplot(array)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()
吴裕雄 python深度学习与实践(5)的更多相关文章
- 吴裕雄 python深度学习与实践(18)
# coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...
- 吴裕雄 python深度学习与实践(17)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...
- 吴裕雄 python深度学习与实践(16)
import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...
- 吴裕雄 python深度学习与实践(15)
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...
- 吴裕雄 python深度学习与实践(14)
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...
- 吴裕雄 python深度学习与实践(13)
import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...
- 吴裕雄 python深度学习与实践(12)
import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...
- 吴裕雄 python深度学习与实践(11)
import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...
- 吴裕雄 python深度学习与实践(10)
import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...
- 吴裕雄 python深度学习与实践(9)
import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...
随机推荐
- 读取txt文件赋值到DataGridView中
先查看txt是每条信息之间是通过什么分割,我是通过换行符(\n)分割的, 然后再看每一条信息中字段是通过什么分割,我的字段是通过 tab键(\t)分割. 第一步 先获取到txt文件的路径: //获取绝 ...
- Web of Science API
Web of Science API是通过Web Service获取Web of Science在线数据的应用程序接口,供各种编程语言调用.简单说,就是你能根据API实时.动态得到网页版Web of ...
- js控制高度自适应,做到响应式
//9宫格布局 var prints=window.innerHeight-($('.header').height()+40);//屏幕去掉(头部高度+头部padding) $('.weui-gri ...
- vue 整合element-ui
本文主要介绍如何在vue框架中结合elementUI. 本文主要参考: http://element-cn.eleme.io/#/zh-CN/component/quickstart 1.阅读本文 ...
- flask 基本操作 模板语言 session
Django web:优点:大而全,ORM models ,model Form ,admin ,csrf ,session缺点:资源浪费 Flask web:优点:小而精,ORM:x , Form: ...
- 函数的嵌套+nonlocal和global关键字(重点)
1.在函数中声明函数 在内部函数中使用变量的时候, 查找顺序: 先找自己 -> 上一层 -> 上一层..全局 -> 内置 # 函数的互相调用 # def func1(): # pri ...
- Javascript函数心得
Javascript函数 Javascript函数是由事件驱动的或者当他被调用时执行的可重复使用的代码块.所以说我们光创建了函数不调用是没有啥用的,我们必须得调用它才能执行. 1.什么是函数 (1)函 ...
- 简单说明一下Token ,Cookie,Session
在Web应用中,HTTP请求是无状态的.即:用户第一次发起请求,与服务器建立连接并登录成功后,为了避免每次打开一个页面都需要登录一下,就出现了cookie,Session. Cookie Cookie ...
- 常见排序算法 - Java实现
1.冒泡排序 每次比较相邻的两个元素大小,调整顺序.从头到尾执行一轮(i),最大数值的元素就排到最后.每次从头到尾执行一轮,都会排好一个元素(length - i - 1).这就是说一个包含 n 个元 ...
- UiAutomator 代码记录 : 遍历桌面
package test_one; import java.lang.*; import java.io.File; import com.android.uiautomator.core.UiDev ...