吴裕雄 python深度学习与实践(8)
import cv2
import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
turn_green_hsv = img_hsv.copy()
turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] - 30 ) % 180
turn_green_img = cv2.cvtColor(turn_green_hsv,cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)
import cv2 img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
less_color_hsv = img_hsv.copy()
less_color_hsv[:, :, 1] = less_color_hsv[:, :, 1] * 0.6
turn_green_img = cv2.cvtColor(less_color_hsv, cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)
import cv2 img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
less_color_hsv = img_hsv.copy()
less_color_hsv[:, :, 2] = less_color_hsv[:, :, 2] * 0.6
turn_green_img = cv2.cvtColor(less_color_hsv, cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)
import cv2
import numpy as np
import matplotlib.pyplot as plt img = plt.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
gamma_change = [np.power(x/255,0.4) * 255 for x in range(256)]
gamma_img = np.round(np.array(gamma_change)).astype(np.uint8)
img_corrected = cv2.LUT(img, gamma_img)
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(img_corrected)
plt.show()
import cv2
import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
M_copy_img = np.array([[0, 0.8, -200],[0.8, 0, -100]], dtype=np.float32)
img_change = cv2.warpAffine(img, M_copy_img,(300,300))
cv2.imshow("test",img_change)
cv2.waitKey(0)
import cv2
import random img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
width,height,depth = img.shape
img_width_box = width * 0.2
img_height_box = height * 0.2
for _ in range(9):
start_pointX = random.uniform(0, img_width_box)
start_pointY = random.uniform(0, img_height_box)
copyImg = img[int(start_pointX):200, int(start_pointY):200]
cv2.imshow("test", copyImg)
cv2.waitKey(0)
import cv2 img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
rows,cols,depth = img.shape
img_change = cv2.getRotationMatrix2D((cols/2,rows/2),45,1)
res = cv2.warpAffine(img,img_change,(rows,cols))
cv2.imshow("test",res)
cv2.waitKey(0)
import cv2
import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
turn_green_hsv = img_hsv.copy()
turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] + np.random.random() ) % 180
turn_green_hsv[:,:,1] = (turn_green_hsv[:,:,1] + np.random.random() ) % 180
turn_green_hsv[:,:,2] = (turn_green_hsv[:,:,2] + np.random.random() ) % 180
turn_green_img = cv2.cvtColor(turn_green_hsv,cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)
import cv2 def on_mouse(event, x, y, flags, param):
rect_start = (0,0)
rect_end = (0,0)
if event == cv2.EVENT_LBUTTONDOWN:
rect_start = (x,y)
if event == cv2.EVENT_LBUTTONUP:
rect_end = (x, y)
cv2.rectangle(img, rect_start, rect_end,(0,255,0), 2) img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
cv2.namedWindow('test')
cv2.setMouseCallback("test",on_mouse)
while(1):
cv2.imshow("test",img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
吴裕雄 python深度学习与实践(8)的更多相关文章
- 吴裕雄 python深度学习与实践(18)
# coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...
- 吴裕雄 python深度学习与实践(17)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...
- 吴裕雄 python深度学习与实践(16)
import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...
- 吴裕雄 python深度学习与实践(15)
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...
- 吴裕雄 python深度学习与实践(14)
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...
- 吴裕雄 python深度学习与实践(13)
import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...
- 吴裕雄 python深度学习与实践(12)
import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...
- 吴裕雄 python深度学习与实践(11)
import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...
- 吴裕雄 python深度学习与实践(10)
import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...
- 吴裕雄 python深度学习与实践(9)
import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...
随机推荐
- WPF Blend Grid 布局
这几天都在用blend拖拽界面.我想要的效果是 放大后出现的效果是 但实际出来的效果是放大以后能看到所有的控件,缩小以后窗体就把控件个遮住了.怎么办? 在WPF中提供了9种布局方式,具体Grid,Ca ...
- alignedReID: surpassing human-level performance in person re-identification (paper reading)
关键点: 1)对齐 (8%) 2)mutual learning (3%) 3)classification loss, hard triplet同时 4)re-ranking (5~6%) 关于对齐 ...
- Dubbo的Filter实战--整合Oval校验框架
前言: 其实很早之前就想写一篇关于oval和具体服务相整合的常见做法, 并以此作为一篇笔记. 趁现在项目中间空闲期, 刚好对dubbo的filter有一些了解. 因此想结合两者, 写一下既结合校验框架 ...
- 冒泡排序到k趟
浙大pat题目 将N个整数按从小到大排序的冒泡排序法是这样工作的:从头到尾比较相邻两个元素,如果前面的元素大于其紧随的后面元素,则交换它们.通过一遍扫描,则最后一个元素必定是最大的元素.然后用同样的方 ...
- [转]使用Cython来保护Python代码库
转自:http://blog.csdn.net/chenyulancn/article/details/77168621 最近,我在做一个需要使用Cython来保护整个代码库的Python项目. 起初 ...
- oidc User.Identity.Name 为空解决方法
public override Task TicketReceived(TicketReceivedContext context) { var result = base.TicketReceive ...
- 黄聪:windows下使用xampp3.2.2配置多个监听端口和不同的网站目录
windows下使用xampp3.2.2配置多个监听端口和不同的网站目录 一:配置Apache文件httpd.conf 打开Apache的配置文件httpd.conf,可以通过点击xampp的Apac ...
- python之路——16
王二学习python的笔记以及记录,如有雷同,那也没事,欢迎交流,wx:wyb199594 学习内容 1.内置函数 1. python 数据类型:int bool 数据结构:dic list tupl ...
- 八皇后(DFS)
题目描述 会下国际象棋的人都很清楚:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题. 对于某个满足要求的8 ...
- linux怎么样显示命令历史后又显示命令的输入时间
linux的bash内部命令history就可以显示命令行的命令历史,默认环境执行 history命令后,通常只会显示已执行命令的序号和命令本身.如果想要查看命令历史的时间戳,那么可以执行: 临时显示 ...