吴裕雄 python深度学习与实践(8)
import cv2
import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
turn_green_hsv = img_hsv.copy()
turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] - 30 ) % 180
turn_green_img = cv2.cvtColor(turn_green_hsv,cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)

import cv2
img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
less_color_hsv = img_hsv.copy()
less_color_hsv[:, :, 1] = less_color_hsv[:, :, 1] * 0.6
turn_green_img = cv2.cvtColor(less_color_hsv, cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)

import cv2
img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
less_color_hsv = img_hsv.copy()
less_color_hsv[:, :, 2] = less_color_hsv[:, :, 2] * 0.6
turn_green_img = cv2.cvtColor(less_color_hsv, cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)

import cv2
import numpy as np
import matplotlib.pyplot as plt img = plt.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
gamma_change = [np.power(x/255,0.4) * 255 for x in range(256)]
gamma_img = np.round(np.array(gamma_change)).astype(np.uint8)
img_corrected = cv2.LUT(img, gamma_img)
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(img_corrected)
plt.show()

import cv2
import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
M_copy_img = np.array([[0, 0.8, -200],[0.8, 0, -100]], dtype=np.float32)
img_change = cv2.warpAffine(img, M_copy_img,(300,300))
cv2.imshow("test",img_change)
cv2.waitKey(0)

import cv2
import random img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
width,height,depth = img.shape
img_width_box = width * 0.2
img_height_box = height * 0.2
for _ in range(9):
start_pointX = random.uniform(0, img_width_box)
start_pointY = random.uniform(0, img_height_box)
copyImg = img[int(start_pointX):200, int(start_pointY):200]
cv2.imshow("test", copyImg)
cv2.waitKey(0)
import cv2
img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
rows,cols,depth = img.shape
img_change = cv2.getRotationMatrix2D((cols/2,rows/2),45,1)
res = cv2.warpAffine(img,img_change,(rows,cols))
cv2.imshow("test",res)
cv2.waitKey(0)

import cv2
import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
turn_green_hsv = img_hsv.copy()
turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] + np.random.random() ) % 180
turn_green_hsv[:,:,1] = (turn_green_hsv[:,:,1] + np.random.random() ) % 180
turn_green_hsv[:,:,2] = (turn_green_hsv[:,:,2] + np.random.random() ) % 180
turn_green_img = cv2.cvtColor(turn_green_hsv,cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)

import cv2 def on_mouse(event, x, y, flags, param):
rect_start = (0,0)
rect_end = (0,0)
if event == cv2.EVENT_LBUTTONDOWN:
rect_start = (x,y)
if event == cv2.EVENT_LBUTTONUP:
rect_end = (x, y)
cv2.rectangle(img, rect_start, rect_end,(0,255,0), 2) img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
cv2.namedWindow('test')
cv2.setMouseCallback("test",on_mouse)
while(1):
cv2.imshow("test",img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()

吴裕雄 python深度学习与实践(8)的更多相关文章
- 吴裕雄 python深度学习与实践(18)
# coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...
- 吴裕雄 python深度学习与实践(17)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...
- 吴裕雄 python深度学习与实践(16)
import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...
- 吴裕雄 python深度学习与实践(15)
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...
- 吴裕雄 python深度学习与实践(14)
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...
- 吴裕雄 python深度学习与实践(13)
import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...
- 吴裕雄 python深度学习与实践(12)
import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...
- 吴裕雄 python深度学习与实践(11)
import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...
- 吴裕雄 python深度学习与实践(10)
import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...
- 吴裕雄 python深度学习与实践(9)
import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...
随机推荐
- python 查找目录下 文件名中含有某字符串的文件
有坑的地方: 如果代码写成这样: [( os.path.abspath(x)) for x in os.listdir(startPath) ] 此代码只能用于当前目录下,listdir列出的都只是文 ...
- JavaBasic_12
类 抽象:对象的共性 类:产生对象的模板(对于属性来讲,类规定有没有属性以及属性类型,具体的属性值因对象的不同而不同) 数据类型:数据集及基于这个数据集的操作 类:我们自定义类型(定义成员变量,基于数 ...
- CCF-权限查询-201612-3
这道题,开始只有10分.....原因是将false 写成了 flase 我要吐血而亡....关键是还debug了半天,以为是逻辑错了 不过亮点是代码很简洁,网上140+的代码看着真复杂 核心: 做题之 ...
- 《Linux内核原理与分析》第八周作业
课本:第七章 可执行程序工作原理 ELF目标文件格式 目标文件:编译器生成的文件. 目标文件的格式:out格式.COFF格式.PE(windows)格式.ELF(Linux)格式. ELF(Execu ...
- springdata笔记
SpringData整合hibernate CRUD操作: applicationContext.xml: <?xml version="1.0" encoding=&quo ...
- [cf1038E][欧拉路]
http://codeforces.com/contest/1038/problem/E E. Maximum Matching time limit per test 2 seconds memor ...
- 将struct转为map
package main import ( "fmt" "reflect" "time" ) type User struct { Id i ...
- Mac 永久添加 环境变量方法
在 ~ 目录下 新建 .bash_profile 文件 在文件新增 export PATH="$PATH:/Users/zhangpengchao/tools/flutter/flutter ...
- 浅谈JavaScript函数重载
上个星期四下午,接到了网易的视频面试(前端实习生第二轮技术面试).面了一个多小时,自我感觉面试得很糟糕的,因为问到的很多问题都很难,根本回答不上来.不过那天晚上,还是很惊喜的接到了HR面电话.现在HR ...
- Java虚拟机的内部体系结构
1.Java程序执行流程 Java程序的执行依赖于编译环境和运行环境.源码代码转变成可执行的机器代码,由下面的流程完成: Java技术的核心就是Java虚拟机,因为所有的Java程序都在虚拟机上运行. ...