吴裕雄 python深度学习与实践(8)
import cv2
import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
turn_green_hsv = img_hsv.copy()
turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] - 30 ) % 180
turn_green_img = cv2.cvtColor(turn_green_hsv,cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)
import cv2 img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
less_color_hsv = img_hsv.copy()
less_color_hsv[:, :, 1] = less_color_hsv[:, :, 1] * 0.6
turn_green_img = cv2.cvtColor(less_color_hsv, cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)
import cv2 img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
less_color_hsv = img_hsv.copy()
less_color_hsv[:, :, 2] = less_color_hsv[:, :, 2] * 0.6
turn_green_img = cv2.cvtColor(less_color_hsv, cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)
import cv2
import numpy as np
import matplotlib.pyplot as plt img = plt.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
gamma_change = [np.power(x/255,0.4) * 255 for x in range(256)]
gamma_img = np.round(np.array(gamma_change)).astype(np.uint8)
img_corrected = cv2.LUT(img, gamma_img)
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(img_corrected)
plt.show()
import cv2
import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
M_copy_img = np.array([[0, 0.8, -200],[0.8, 0, -100]], dtype=np.float32)
img_change = cv2.warpAffine(img, M_copy_img,(300,300))
cv2.imshow("test",img_change)
cv2.waitKey(0)
import cv2
import random img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
width,height,depth = img.shape
img_width_box = width * 0.2
img_height_box = height * 0.2
for _ in range(9):
start_pointX = random.uniform(0, img_width_box)
start_pointY = random.uniform(0, img_height_box)
copyImg = img[int(start_pointX):200, int(start_pointY):200]
cv2.imshow("test", copyImg)
cv2.waitKey(0)
import cv2 img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
rows,cols,depth = img.shape
img_change = cv2.getRotationMatrix2D((cols/2,rows/2),45,1)
res = cv2.warpAffine(img,img_change,(rows,cols))
cv2.imshow("test",res)
cv2.waitKey(0)
import cv2
import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
turn_green_hsv = img_hsv.copy()
turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] + np.random.random() ) % 180
turn_green_hsv[:,:,1] = (turn_green_hsv[:,:,1] + np.random.random() ) % 180
turn_green_hsv[:,:,2] = (turn_green_hsv[:,:,2] + np.random.random() ) % 180
turn_green_img = cv2.cvtColor(turn_green_hsv,cv2.COLOR_HSV2BGR)
cv2.imshow("test",turn_green_img)
cv2.waitKey(0)
import cv2 def on_mouse(event, x, y, flags, param):
rect_start = (0,0)
rect_end = (0,0)
if event == cv2.EVENT_LBUTTONDOWN:
rect_start = (x,y)
if event == cv2.EVENT_LBUTTONUP:
rect_end = (x, y)
cv2.rectangle(img, rect_start, rect_end,(0,255,0), 2) img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg")
cv2.namedWindow('test')
cv2.setMouseCallback("test",on_mouse)
while(1):
cv2.imshow("test",img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
吴裕雄 python深度学习与实践(8)的更多相关文章
- 吴裕雄 python深度学习与实践(18)
# coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...
- 吴裕雄 python深度学习与实践(17)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...
- 吴裕雄 python深度学习与实践(16)
import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...
- 吴裕雄 python深度学习与实践(15)
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...
- 吴裕雄 python深度学习与实践(14)
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...
- 吴裕雄 python深度学习与实践(13)
import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...
- 吴裕雄 python深度学习与实践(12)
import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...
- 吴裕雄 python深度学习与实践(11)
import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...
- 吴裕雄 python深度学习与实践(10)
import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...
- 吴裕雄 python深度学习与实践(9)
import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...
随机推荐
- ubuntu 安装 c语言的库函数man手册
安装 1.C语言库函数基本的帮助文档 sudo apt-get install manpages sudo apt-get install manpages-de sudo apt-get insta ...
- linux局域网内挂载其它操作系统目录
一.linux挂载windows 1.windows目录打开共享: 2.mount -t cifs -o username=admin***tor,password=abc //192.168.*** ...
- python中str函数isdigit、isdecimal、isnumeric的区别
num = "1" #unicodenum.isdigit() # Truenum.isdecimal() # Truenum.isnumeric() # True num = & ...
- python的set处理二维数组转一维数组
for splitValue in set(dataset[:, featureIndex].tolist()): 首先set是一个无序,无重复的数据结构,所以很多时候使用它来进行去重:但是set接收 ...
- VS Code 运行 TypeScript 操作指南
总结一下TypeScript开发环境用到的各种工具: Node——通过npm安装TypeScript及大量依赖包.从https://nodejs.org/下载并安装它:如果安装各种包不方便,可以将安装 ...
- Ubuntu下三种方法设置环境变量
一种用于当前终端,一种用于当前用户,一种用于所有用户: 用于当前终端: 在当前终端中输入:export PATH=$PATH:<你的要加入的路径> 不过上面的方法只适用于当前终端,一旦当前 ...
- AttributeError: 'module' object has no attribute 'main'
本机环境:ubuntu16.04, ros-kinetic $ roscore 报错 Traceback (most recent call last): File , in <module& ...
- <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes
<Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...
- [转]检测到有潜在危险的 Request.Form 值
<system.web> <httpRuntime targetFramework="4.0" requestValidationMode="2.0&q ...
- docker入门 什么是docker? 为什么使用docker?
1.什么是docker? 轻量级操作系统虚拟化解决方案 2.为什么使用docker? 1.docker的启动是秒级的,比传统虚拟机快很多 2.资源利用率高,一台主机上可同时运行数千个docker容器 ...