Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 4137   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..…
http://poj.org/problem?id=1659 Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 6050   Accepted: 2623   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 6076   Accepted: 2636   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1,x2, ...,…
题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS     Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系. Input 第一行是测试数据的组数T(0…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9639   Accepted: 4051   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10545   Accepted: 4386   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, .…
题意:我们常根据无向边来计算每个节点的度,现在反过来了,已知每个节点的度,问是否可图,若可图,输出一种情况. 分析:这是一道定理题,只要知道可图定理,就是so easy了  可图定理:对每个节点的度从大到小排序,取第一个(最大)的度的节点,依次与其后(度)的节点连边,每连一条边,对应的度减1.然后重新排序,重复以上步骤,若度出现负值,则不可图.(若n个点中,某点的度>=n,那么也是不可能的) #include<cstdio> #include<cstring> #includ…
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098136.html 给定一个非负整数序列$D=\{d_1,d_2,...d_n\}$,若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化.进一步,若图为简单图,则称此序列可简单图化. 可图化的判定为:$d_1+d_2+ \cdots +d_n=0(mod2)$.即把奇数度的点配对,剩下的变为自环.可简单图化的判定,即Havel-Hakimi定理: 我们把序列$D$变换为非…
Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系. Input 第一行是测试数据的组数T(0 ≤ T ≤ 20).每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0 ≤ xi ≤ N…
题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化.简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况. #include <cstdi…
转载请注明出处:http://blog.csdn.net/a1dark 分析:切图论切的第一道题.也是图论的例题.主要用到一个Havel-Hakimi 定理 有以下两种不合理的情形: (1) 某次对剩下序列排序后,最大的度数(设为d1)超过了剩下的顶点数: (2) 对最大度数后面的d1 个度数各减1 后,出现了负数. #include<stdio.h> #include<stdlib.h> #include<string.h> #define N 15 struct v…
题意:中文题. 析:贪心策略,先让邻居多的选,选的时候也尽量选邻居多的. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring>…
两个概念 1.度序列 若把图G所有顶点的度数排成一个序列S,则称S为图G的度序列. 2.序列是可图的 一个非负整数组成的序列如果是某个无向图的度序列,则称该序列是可图的. Havel-Hakimi定理 由非负整数组成的非增序列S:d1, d2 ,..., dn (n≥2,d1≥1)是可图的,当且仅当序列S1:d2-1,d3-1,...,dd1+1-1,dd1+2,...,dn是可图的.其中,序列S1中有n-1个非负整数,S序列中d1后的前d1个度数(即d2~dd1+1)减1后构成S1中的前d1个…
题意: 对一个无向图给出一个度序列,问他是否可简单图化. 分析: 依据Havel定理,直接贪心就可以. 代码: //poj 1659 //sep9 #include <iostream> #include <algorithm> using namespace std; struct Node{ int num,ids; }p[16]; int ans[16][16]; int n; int cmp(Node a,Node b){ return a.num>b.num; }…
意甲冠军  中国 依据Havel-Hakimi定理构图即可咯  先把顶点按度数从大到小排序  可图的话  度数大的顶点与它后面的度数个顶点相连肯定是满足的  出现了-1就说明不可图了 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N = 20; int mat[N][N], ord[N]; bool cmp(int i, int j) { ret…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 7295   Accepted: 3150   Special Judge Description 未名湖附近共同拥有N个大小湖泊L1, L2, ..., Ln(当中包含未名湖),每一个湖泊Li里住着一仅仅青蛙Fi(1 ≤ i ≤ N). 假设湖泊Li和Lj之间有水路相连.则青蛙Fi和Fj互称为邻居. 如今已知每仅仅青蛙的邻居数目x1,…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10660   Accepted: 4433   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, .…
今日内容概要 前台主页 后台主页轮播图接口 跨域问题详解 前后端打通 后端自定义配置 git介绍和安装 内容详细 1.前台主页 Homeviwe.vue <template> <div class="home"> <Header></Header> <Banner></Banner> <!-- 推荐课程--> <div class="course"> <el-row…
题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这个序列. 令\(S=(d_1,d_2,\dots,d_n)\)为有限多个非负整数组成的非递增序列. S可简单图化当且仅当有穷序列\(S'=(d_2-1,d_3-1,...,d(d_1+1)-1,d(d_1+2),...,d_n)\)只含有非负整数且是可简单图化的. 最后判断一下是否都是零就好了 感觉…
题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem/POJ-1061 题目描述: Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是…
Javascript基于对象的三大特征和C++,Java面向对象的三大特征一样,都是封装(encapsulation).继承(inheritance )和多态(polymorphism ).只不过实现的方式不同,其基本概念是差不多的.其实除三大特征之外,还有一个常见的特征叫做抽象(abstract),这也就是我们在一些书上有时候会看到面向对象四大特征的原因了. 一.封装性 封装就是把抽象出来的数据和对数据的操作封装在一起,数据被保护在内部,程序的其它部分只有通过被授权的操作(成员方法),才能对数…
转载自http://developer.51cto.com/art/201006/205212_all.htm Spring作为现在最优秀的框架之一,已被广泛的使用,51CTO也曾经针对Spring框架中的JDBC应用做过报道.本文将从另外一个视角试图剖析出Spring框架的作者设计Spring框架的骨骼架构的设计理念. AD: Spring作为现在最优秀的框架之一,已被广泛的使用,51CTO也曾经针对Spring框架中的JDBC应用做过报道.本文将从另外一个视角试图剖析出Spring框架的作者…
poj 1659 Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系. Input 第一行是测试数据的组数T(0 ≤ T ≤ 20).每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0…
未名湖附近共有N个大小湖泊L1, L2, -, Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, -, xn,请你给出每两个湖泊之间的相连关系. Input 第一行是测试数据的组数T(0 ≤ T ≤ 20).每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,-, xn(0 ≤ xi ≤ N). Output 对输入的每组测试…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 8729   Accepted: 3676   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10239   Accepted: 4272   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, .…
题意:裸的弦图的判定: 弦图定义:给出一个无向连通图,如果每个环中都存在至少一条弦(环中存在不相邻的两点直接相连)这样的图叫做弦图: 转载:http://blog.csdn.net/crux_d/article/details/2251963 以下是时间复杂度为O(n+m)的算法,n是图的点数,m是图的边数.  第一步:给节点编号  设已编号的节点集合为A,未编号的节点集合为B  开始时A为空,B包含所有节点.  for num=n-1 downto 0 do  {  在B中找节点x,使与x相邻…
Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 7920   Accepted: 3392   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..…
题意: 给定一个混合图,所谓混合图就是图中既有单向边也有双向边,现在求这样的图是否存在欧拉回路. 分析: 存在欧拉回路的有向图,必须满足[入度==出度],现在,有些边已经被定向,所以我们直接记录度数即可,对于无向边呢? 对于这样的边,我们只需要先随便定向,然后记录出入度.(这些边只用来计算出入度,不用于网络流建图) 然后我们开始建图.现在极有可能有些点是不满足[入度==出度]的,所以我们要通过一些变向操作,使得图中所有点满足判定. 如果一个点入度和出度的奇偶性不同,那整张图一定是不合法的.因为改…
传送门 参考资料: [1]:图论-度序列可图性判断(Havel-Hakimi定理) •题意 给你 n 个非负整数列,判断这个序列是否为可简单图化的: •知识支持 握手定理:在任何无向图中,所有顶点的度数之和等于边数的2倍: 推论:任何图,奇度顶点的个数为偶数: 可图化定理:非负整数序列 $d={d_1,d_2,\cdots,d_n}$ 是可图化的当且仅当 $\sum_{i=1}^{i \leq n}d_i$ 为偶数: 简单图:既不含平行边,也不含环: 平行边:在无向图中,如果关联一对顶点的无向边…