import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from sklearn.model_selection import train_test_split # 加载 scikit-learn 自带的 digits 数据集 def load_data(): ''' 加载用于分类问题的数据集.这里使用 scikit-learn 自带的 digits 数据集 ''' digits=datasets.load…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from sklearn.model_selection import train_test_split # 加载 scikit-learn 自带的 digits 数据集 def load_data(): ''' 加载用于分类问题的数据集.这里使用 scikit-learn 自带的 digits 数据集 ''' d…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from sklearn.model_selection import train_test_split # 加载 scikit-learn 自带的 digits 数据集 def load_data(): ''' 加载用于分类问题的数据集.这里使用 scikit-learn 自带的 digits 数据集 ''' d…
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics import adjusted_rand_score from sklearn.datasets.samples_generator import make_blobs def create_data(centers,num=100,std=0.7): X, labels_true = make_b…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' diabetes = datasets.load_diabetes() #使用 scikit-lea…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_classfication(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.lo…
import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.datasets import load_digits from sklearn.model_selection import validation_curve #模型选择验证曲线validation_curve模型 def test_validation_curve(): ''' 测试 validat…
import numpy as np from sklearn.model_selection import train_test_split,KFold,StratifiedKFold,LeaveOneOut,cross_val_score #模型选择数据集切分train_test_split模型 def test_train_test_split(): X=[[1,2,3,4], [11,12,13,14], [21,22,23,24], [31,32,33,34], [41,42,43,4…
import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import GridS…