L1范式和L2范式的区别】的更多相关文章

正则化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和L2正则化可以看做是损失函数的惩罚项.所谓『惩罚』是指对损失函数中的某些参数做一些限制.对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归).下图是Python中Lasso回归的损失函数,式中加号后面一项…
L1 and L2 regularization add a cost to high valued weights to prevent overfitting. L1 regularization is an absolute value cost function and tends to set more weights to 0 (places more mass on zero weights) compared to L2 regularization. Difference be…
L1,L2正则都可以看成是 条件限制,即 $\Vert w \Vert \leq c$ $\Vert w \Vert^2 \leq c$ 当w为2维向量时,可以看到,它们限定的取值范围如下图: 所以它们对模型的限定不同 而对于一般问题来说,L1 正则往往取到正方形的顶点,即会有很多分量为0,具有稀疏性,有特征选择的作用…
L1.L2范式及稀疏性约束 假设需要求解的目标函数为: E(x) = f(x) + r(x) 其中f(x)为损失函数,用来评价模型训练损失,必须是任意的可微凸函数,r(x)为规范化约束因子,用来对模型进行限制,根据模型参数的概率分布不同,r(x)一般有:L1范式约束(模型服从高斯分布),L2范式约束(模型服从拉普拉斯分布):其它的约束一般为两者组合形式. L1范式约束一般为: L2范式约束一般为: L1范式可以产生比较稀疏的解,具备一定的特征选择的能力,在对高维特征空间进行求解的时候比较有用:L…
这里讨论机器学习中L1正则和L2正则的区别. 在线性回归中我们最终的loss function如下: 那么如果我们为w增加一个高斯先验,假设这个先验分布是协方差为 的零均值高斯先验.我们在进行最大似然: 这个东西不就是我们说的加了L2正则的loss function吗? 同理我们如果为w加上拉普拉斯先验,就可以求出最后的loss function也就是我们平时说的加了L1正则: 因为拉普拉斯的分布相比高斯要更陡峭,它们的分布类似下图,红色表示拉普拉斯,黑色表示高斯 可以看出拉普拉斯的小w的数目要…
L0:计算非零个数,用于产生稀疏性,但是在实际研究中很少用,因为L0范数很难优化求解,是一个NP-hard问题,因此更多情况下我们是使用L1范数L1:计算绝对值之和,用以产生稀疏性,因为它是L0范式的一个最优凸近似,容易优化求解L2:计算平方和再开根号,L2范数更多是防止过拟合,并且让优化求解变得稳定很快速(这是因为加入了L2范式之后,满足了强凸).   http://blog.csdn.net/zouxy09/article/details/24971995…
我在很久之前的一篇文章中介绍了数据库模型设计中的基本三范式,今天,我来说一说更高级的BC范式和第四范式. 回顾 我用大白话来回顾一下什么是三范式: 第一范式:每个表应该有唯一标识每一行的主键. 第二范式:在复合主键的情况下,非主键部分不应该依赖于部分主键. 第三范式:非主键之间不应该有依赖关系. 这是我们设计数据库的基本规则,但是只有这三个规则并不能完全解决数据的增删改的异常情况,下面就来看看BC范式的例子. BC范式 BC范式(BCNF)是Boyce-Codd范式的缩写,其定义是:在关系模式中…
设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库,这些不同的规范要求被称为不同的范式,各种范式呈递次规范,越高的范式数据库冗余越小.但是有些时候一昧的追求范式减少冗余,反而会降低数据读写的效率,这个时候就要反范式,利用空间来换时间. 目前关系数据库有六种范式:第一范式(1NF).第二范式(2NF).第三范式(3NF).巴斯-科德范式(BCNF).第四范式(4NF)和第五范式(5NF,又称完美范式).满足最低要求的范式是第一范式(1NF).在第一范式的基础上进一步满足更多规范要求的称…
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模型复杂度来避免模型过拟合.确保泛化能力的一种有效方式.如果将模型原始的假设空间比作"天空",那么天空飞翔的"鸟"就是模型可能收敛到的一个个最优解.在施加了模型正则化后,就好比将原假设空间("天空")缩小到一定的空间范围("笼子")…
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个直观的例子:假定x有两个属性,于是无论是采用L1正则化还是采用L2正则化,它们解出的w权重向量都具有两个分量,即w1,w2:我们将其作为两个坐标轴,然后在这个二维空间中绘制 平方误差取值相同的连线,再分别绘制出L1范数和L2范数的等值线,那么我们的解就是平方误差等值线和范数等值线的焦点.从图上(机器…
一.前述 鲁棒性调优就是让模型有更好的泛化能力和推广力. 二.具体原理 1.背景 第一个更好,因为当把测试集带入到这个模型里去.如果测试集本来是100,带入的时候变成101,则第二个模型结果偏差很大,而第一个模型偏差不是很大. 2.目的 鲁棒性就是为了让w参数也就是模型变小,但不是很小.所以引出了 L1和L2正则.  L1和L2的使用就是让w参数减小的使用就是让w参数减小. L1正则,L2正则的出现原因是为了推广模型的泛化能力.相当于一个惩罚系数. 3.具体使用 L1正则:Lasso Regre…
一.前述 L1正则,L2正则的出现原因是为了推广模型的泛化能力.相当于一个惩罚系数. 二.原理 L1正则:Lasso Regression L2正则:Ridge Regression 总结: 经验值 MSE前系数为1 ,L1 , L2正则前面系数一般为0.4~0.5 更看重的是准确性. L2正则会整体的把w变小. L1正则会倾向于使得w要么取1,要么取0 ,稀疏矩阵 ,可以达到降维的角度. ElasticNet函数(把L1正则和L2正则联合一起): 总结: 1.默认情况下选用L2正则. 2.如若…
L1范数与L2范数​ ​ L1范数与L2范数在机器学习中,是常用的两个正则项,都可以防止过拟合的现象.L1范数的正则项优化参数具有稀疏特性,可用于特征选择:L2范数正则项优化的参数较小,具有较好的抗干扰能力. 1. 防止过拟合 ​ L2正则项优化目标函数时,一般倾向于构造构造较小参数,一般认为,参数值较小的模型相对简单,能适应不同的数据集,在一定程度上避免过拟合的现象,参数较小,数据偏移带来的影响也会较小,从而说L2正则项具有较好的抗干扰能力,从而实现防止过拟合的现象. ​ L1正则项也可以防止…
数据库的规范化(上一篇博客有写到)的程度不同,便有了这么多种范式.数据库范式是数据库设计必不可少的知识,没有对范式的理解,就无法设计出高效率.优雅的数据库,甚至设计出错误误的数据库.课本中的定义比较抽象,不太直观,也不易理解,记是肯定记不住的. 关系数据库 常用范式 关系数据库知道了,再来理解范式.范式是关系数据库关系模式规范化的标准,从规范化的宽松到严格,分为不同的范式,通常使用的有第一范式.第二范式.第三范式及BC范式.范式是建立在函数依赖基础上的. 函数依赖 如果一个表中某一个字段Y的值是…
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意,L1 正则化除了和L2正则化一样可以约束数量级外,L1正则化还能起到使参数更加稀疏的作用,稀疏化的结果使优化后的参数一部分为0,另一部分为非零实值.非零实值的那部分参数可起到选择重要参数或特征维度的作用,同时可起到去除噪声的效果.此外,L1正则化和L2正则化可以联合使用: 这种形式也被称为“Elas…
1. 为什么要使用正则化   我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据:   可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ x^3,x^4 $ 的参数 $ \theta_3,\theta_4 $ 尽量满足 $ \theta_3 \approx 0 ,\theta_4 \approx 0 $ .   而如何使得 $ \theta_3,\theta_4 $ 尽可能接近 $ 0 $ 呢?那就是对参数施一惩罚项.我们先来看一下线…
设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库,这些不同的规范要求被称为不同的范式,各种范式呈递次规范,越高的范式数据库冗余越小.但是有些时候一昧的追求范式减少冗余,反而会降低数据读写的效率,这个时候就要反范式,利用空间来换时间. 目前关系数据库有六种范式:第一范式(1NF).第二范式(2NF).第三范式(3NF).巴斯-科德范式(BCNF).第四范式(4NF)和第五范式(5NF,又称完美范式).满足最低要求的范式是第一范式(1NF).在第一范式的基础上进一步满足更多规范要求的称…
使用机器学习方法解决实际问题时,我们通常要用L1或L2范数做正则化(regularization),从而限制权值大小,减少过拟合风险.特别是在使用梯度下降来做目标函数优化时,很常见的说法是,  L1正则化产生稀疏的权值, L2正则化产生平滑的权值.为什么会这样?这里面的本质原因是什么呢?下面我们从两个角度来解释这个问题. 角度一:数学公式 这个角度从权值的更新公式来看权值的收敛结果. 首先来看看L1和L2的梯度(导数的反方向): 所以(不失一般性,我们假定:wi等于不为0的某个正的浮点数,学习速…
后一个范式都是在满足前一个范式的基础上建立的. 1NF 无重复的列.表中的每一列都是不可分割的基本数据项.不满足1NF的数据库不是关系数据库.如联系人表(姓名,电话),一个联系人有家庭电话和公司电话,则不符合1NF,应拆分为(姓名,家庭电话,公司电话). 2NF 属性完全依赖于主键.不能存在仅依赖于关键一部分的属性.如选课关系(学号,课程名称,成绩,学分),组合关键字(学号,课程名称)作为主键.其不满足2NF,因为存在决定关系:课程名称->学分,即存在组合主键中的部分字段决定非主属性的情况.会导…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
原文链接:https://blog.csdn.net/w5688414/article/details/78046960 范数(norm) 数学上,范数是一个向量空间或矩阵上所有向量的长度和大小的求和.简单一点,我们可以说范数越大,矩阵或者向量就越大.范数有许多种形式和名字,包括最常见的:欧几里得距离(Euclideandistance),最小均方误差(Mean-squared Error)等等. 大多数时间,你会在等式中看见范数像下面那样: ||x||,x可以是一个向量或者矩阵. 例如一个向量…
范式可以理解成距离 转载自: https://blog.csdn.net/hanhuili/article/details/52079590 内容如下: 由此可见,L2其实就是欧式距离.工程上,往往不做开平方处理.…
一讲到数据库设计,大家很容易想到的就是三范式,但是第四.第五范式又是什么,不是很清楚,三范式到底怎么区分,也不清楚,作为数据库设计的基础概念,我再讲解下数据库范式.   Normal form Brief definition 1NF First normal form Table faithfully represents a relation, primarily meaning it has at least one candidate key 2NF Second normal form…
第一范式(1NF)强调的是列的原子性,即列不能够再分成其他几列. 第二范式(2NF) 首先是 2NF,另外包含两部分内容一是表必须有一个主键:二是没有包含在主键中的列必须完全依赖于主键,而不能只依赖于主键的一部分. 第三范式(3NF) 首先是 2NF,另外非主键列必须直接依赖于主键,不能存在传递依赖.即不能存在:非主键列 A 依赖于非主键列 B,非主键列 B 依赖于主键的情况. 第三范式通常已经可以满足业务需求了,表之间的关系也比较清楚了,容易维护.但是为什么要反范式呢? 首先我们需要了解到定义…
L1正则是权值的绝对值之和,重点在于可以稀疏化,使得部分权值等于零. L1正则的含义是 ∥w∥≤c,如下图就可以解释为什么会出现权值为零的情况. L1正则在梯度下降的时候不可以直接求导,可以有以下几种方法来优化 1.OWL-QN算法http://blog.csdn.net/google19890102/article/details/47424845 对于目标函数中包含加性的非平滑项并使用梯度下降求解的问题,如果可以使用proximal operator,则解法如下: 假设目标函数为 其中 可导…
1.范式,正常的建表,反范式,为了提高效率,适当的已空间换时间 2.垂直拆分,就是把经常用的.或者text大存储的字段单独拉出来存表 3.水平拆分,解决数据量大的问题,进行取莫的方式将数据放到相同的n个表中…
因为各级存储硬件的参数和性能不同所以在计算机硬件当中分为以下几种: 由此可见顶级空间小但处理速度最快,下层容量大但处理速度时间较长. 存储器系统采用分层结构,顶层的存储器速度较高,容量较小,与底层的存储器相比每位的成本较高,其差别往往是十亿数量级的. 寄存器:即L1缓存,与cpu同材质构成,所以数据读写无延迟.典型容量是:在32位cpu中为32*32,在64位cpu中为64*64,在两种情况下容量均<1KB. 高速缓存:即L2缓存,二级缓存就是一级缓存的缓冲器:一级缓存制造成本很高因此它的容量有…
2018-1-26 虽然我们不断追求更好的模型泛化力,但是因为未知数据无法预测,所以又期望模型可以充分利用训练数据,避免欠拟合.这就要求在增加模型复杂度.提高在可观测数据上的性能表现得同时,又需要兼顾模型的泛化力,防止发生过拟合的情况.为了平衡这两难的选择,通常采用两种模型正则化的方法:L1范数正则化与L2范数正则化. 正则化的目的:提高模型在未知测试数据上的泛化力,避免参数过拟合. 正则化常见方法:在原模型优化目标的基础上,增加对参数的惩罚项.  L1范数正则化 这种正则化方法结果会让参数向量…
给定向量x=(x1,x2,...xn)L1范数:向量各个元素绝对值之和L2范数:向量各个元素的平方求和然后求平方根Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方L∞范数:向量各个元素求绝对值,最大那个元素的绝对值…
范数介绍:https://www.zhihu.com/question/20473040?utm_campaign=rss&utm_medium=rss&utm_source=rss&utm_content=title 首先介绍损失函数,它是用来估量你模型的预测值f(x)与真实值Y的不一致程度 主要的几种类型包括:1)0-1损失函数  2)平方损失函数   3)绝对损失函数  4) 对数损失函数 0-1损失函数: 平方损失函数: 绝对损失函数: 对数损失函数: 由此延伸出对应的概念…