Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后在解压好的maven客户端的文件夹内打开conf文件夹,修改里面的settings.xml文件 然后只需要修改这一行就可以了 ,把这一行替换成你自己本地的maven仓库的路径 最好是自己有一个完整点的maven仓库,然后把这个修改过的xml文件放到maven仓库下 到这里,你本地的maven客户端环…
wordcount是spark入门级的demo,不难但是很有趣.接下来我用命令行.scala.Java和python这三种语言来实现单词统计. 一.使用命令行实现单词的统计 1.首先touch一个a.txt文本文件 2.加载文本:产生弹性分布式数据集,用sc.textFile()加载文本文件到内存中去,加载到内存之后,整个RDD就是一个数组,就以换行符来做分隔 val rdd1 = sc.textFile("/home/centos/a.txt") 3.对2中产生的数组按空格进行切割,…
在windows上实现wordcount单词统计 一.编写scala程序,引入spark类库,完成wordcount 1.sparkcontextAPI sparkcontext是spark功能的主要入口点,代表着到spark集群的连接,可用于在这些集群上创建RDD(弹性分布式数据集),累加器和广播变量.在每一个JVM上面只允许一个活跃的sparkcontext.在创建一个新的RDD之前,你应该停止这个活跃的SparkContext 2.sparkconf配置对象 sparkconf是对spar…
之前工作的时候经常用,隔了段时间,现在学校要用学的东西也忘了,翻翻书谢谢博客吧. 1.什么是spark? Spark是一种快速.通用.可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目.目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL.Spark Streaming.GraphX.MLlib等子项目,Spark是基于内存计算的大数据并行计算框架…
一.介绍 1.sparkStreaming是核心模块Spark API的扩展,具有可伸缩,高吞吐量以及容错的实时数据流处理等.数据可以从许多来源(如Kafka,Flume,Kinesis或TCP套接字)中获取.并且可以使用以高级函数表示的复杂算法进行处理map,例如reduce,join和window.最后,处理后的数据可以推送到文件系统,数据库和实时仪表盘.[DStresam]:离散流,连续的RDD序列.准实时计算,以batch处理作业. 2.在内部,它的工作原理如下.Spark Stream…
一.saprkSQL模块,使用类sql的方式访问Hadoop,实现mr计算,底层使用的是rdd 1.hive //hadoop  mr  sql 2.phenoix //hbase上构建sql的交互过程 该模块能在spark上运行sql语句 3.DataFrame //数据框,表 在spark中的数据框,sparkSQL就能以完全分布式的方式来处理数据.组合数据框可以来自各种数据源来进行查询的处理 4.SparkSQL //SQL  |  DataFrame API 5.RDD[Customer…
本文主要讲解如何在Linux环境下安装Spark集群,安装之前我们需要Linux已经安装了JDK和Scala,因为Spark集群依赖这些.下面就如何安装Spark进行讲解说明. 一.安装环境 操作系统:Red Hat Enterprise Linux 6 64 位(版本号6.6) JDK版本:1.8 Scala版本:2.12.2 Spark版本:2.2.0 172.18.3.135 主节点 172.18.3.136 从节点 172.18.3.137 从节点 之后的操作如果是用普通用户操作的话也必…
Spark的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展计算能力.Spark可以在各种各样的集群管理器(Hadoop YARN , Apache Mesos , 还有Spark自带的独立集群管理器)上运行,所以Spark应用既能够适应专用集群,又能用于共享的云计算环境. Spark运行时架构 Spark在分布式环境中的架构如下图: 在分布式环境下,Spark集群采用的是主/从结构.在Spark集群,驱动器节点负责中央协调,调度各个分布式工作节点.执行器节点是工作节点,作为独立的Ja…
Spark是一个用来实现快速而通用的集群计算的平台. Spark项目包含多个紧密集成的组件.Spark的核心是一个对由很多计算任务组成的,运行在多个工作机器或者是一个计算集群上的应用进行调度,分发以及监控的计算引擎.Sark核心引擎有着速度快和通用的特点,因此Spark支持为各种不同应用场景专门设计的高级组件,这些组件关系密切并且可以互相调用. Spark各组件密切结合的设计原理的优点:软件栈中所有的程序库和高级组件都可以从下层改进中获益以及能够构建出无缝整合不同处理模型的应用. Spark各个…
使用spark实现work count ---------------------------------------------------- (1)用sc.textFile(" ") 来实现文件的加载 val rdd1 = sc.testFile("home/centos/test.txt");//加载文本文件,以换行符的方式切割文本文件.Array(hello world1 ,.........),产生第一个弹性分布式数据集 (2)元素拿来之后对集合中的每个元…
在spark中最重要的功能之一是跨操作在内存中持久化数据集.当你持久化一个RDD的时候,每个节点都存放了一个它在内存中计算的一个分区,并在该数据集的其他操作中进行重用,持久化一个RDD的时候,节点上的每个分区都会保存到内存中,这使得将来的action更加的快. 缓存技术是迭代算法和交互式查询的重要工具 可以使用persist()和cache()方法进行rdd的持久化,persist()是持久化到磁盘,而cache()是缓存到内存 action第一次计算的时候才会发生persist() spark…
一.数据倾斜 spark数据倾斜,map阶段对key进行重新划分.大量的数据在经过hash计算之后,进入到相同的分区中,zao…
一.RDD变换 1.返回执行新的rdd的指针,在rdd之间创建依赖关系.每个rdd都有一个计算函数和指向父rdd的指针 Spark是惰性的,因此除非调用某个转换或动作,否则不会执行任何操作,否则将触发工作创建和执行. 2.map()是对每个元素进行变换,应用变换函数,返回的是一个新的分布式数据集,map就是对分区中的每个元素进行一个函数的调用,所以导致出现了那么多: map() //对每个元素进行变换,应用变换函数,(T)=>V, package com.jd.test import org.a…
0.spark是基于hadoop的mr模型,扩展了MR,高效实用MR模型,内存型集群计算,提高了app处理速度. 1.特点:(1)在内存中存储中间结果 (2)支持多种语言:java scala python (3)内置了80多种算子 2.sparkCore模块(通用执行引擎) (1)通用的执行引擎,提供内存计算和对外部数据集的引用. 3.spark sql (1)Spark SQL是Spark Core之上的组件,引入了新的数据抽象称为SchemaRDD,它为结构化和半结构化数据提供支持. 4.…
1.[start-all.sh] #!/usr/bin/env bash # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. #…
推荐模型 推荐模型的种类分为: 1.基于内容的过滤:基于内容的过滤利用物品的内容或是属性信息以及某些相似度定义,来求出与该物品类似的物品. 2.协同过滤:协同过滤是一种借助众包智慧的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相似度的定义. 在基于用户的方法的中,如果两个用户表现出相似的偏好(即对相同物品的偏好大体相同),那就认为他们的兴趣类似. 同样也可以借助基于物品的方法来做推荐.这种方法通常根据现有用户对物品的偏好或是评级情况,来计算物品之间的某种相似…
1.使用Sparkconf配置Spark 对Spark进行性能调优,通常就是修改Spark应用的运行时配置选项. Spark中最主要的配置机制通过SparkConf类对Spark进行配置,当创建出一个SparkContext时,就需要创建出一个SparkConf实例. Sparkconf实例包含用户要重载的配置选项的键值对.调用set()方法来添加配置项的设置,然后把这个对象传给SparkContext的构造方法. 调用setAppName()和setMaster()来分别设置spark.app…
MONGODB SPARK CONNECTOR 测试数据量: 测试结果: 116万数据通过4个表的join,从SQL Server查出,耗时1分多.MongoSparkConnector插入平均耗时:3分30秒. 总计耗时4分半-5分钟.…
Spark 1.5.2 Spark Streaming 学习笔记和编程练习 Overview 概述 Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams. Data can be ingested from many sources like Kafka,…
Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-core_2.10 的依赖 程序 找了一篇注释比较清楚的博客代码1,一次运行通过 import scala.Tuple2; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常见的转化操作和行动操作 基本RDD 行动操作 不同 RDD 的类型转换 持久化 Spark学习笔记3--RDD(下) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 向Spark传递函数 大部分 Spark 的转化操作和一部分行动操作,都需要传递函数后进行计算.如…
Spark学习笔记之SparkRDD 一.   基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ①   内存集合和外部存储系统 ②   通过转换来自于其他RDD,如map,filter等 2.创建操作(creation operation):RDD的创建由SparkContext来负责. 3.转换操作(transformation operation):将一个RDD通过一定操作转换为另一个RDD. 4.控制操作(control o…
目录 目录 概况 原理 API DStream WordCount示例 Input DStream Transformation Operation Output Operation 缓存与持久化 Checkpoint 性能调优 降低批次处理时间 设置合理批次时间间隔 内存调优 概况 Spark Streaming支持实时数据流的可扩展(scalable).高吞吐(high-throughput).容错(fault-tolerant)的流处理(stream processing). 架构图 特性…
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的spark搭建后是否真正可以使用了 1.今天就和大家写一个计算π的spark代码 下面我把已经写好了的代码放在下面,大家可以借以参考一下 package day02 import org.apache.spark.{SparkConf, SparkContext} import scala.math.r…
spark学习笔记01 1.课程目标 1.熟悉spark相关概念 2.搭建一个spark集群 3.编写简单spark应用程序 2.spark概述 spark是什么 是基于内存的分布式计算引擎,计算速度非常快,仅仅只是涉及到数据的计算,没有涉及到数据存储.可以对接外部的数据源(比如hdfs,这个时候就需要搭建一个hadoop集群) 为什么要学习spark spark运行速度快,由于中间数据结果可以不落地,直接保存在内存中,速度比mapreduce快很多 3.spark特性 速度快 spark比ma…
使用MLlib库中的机器学习算法对垃圾邮件进行分类 分类的垃圾邮件的如图中分成4个文件夹,两个文件夹是训练集合,两个文件夹是测试集合 build.sbt文件 name := "spark-first" version := "1.0" scalaVersion := "2.11.8" libraryDependencies ++= Seq( "org.apache.spark" % "spark-core_2.11&…
1.去清华的镜像站点下载文件spark-2.1.0-bin-without-hadoop.tgz,不要下spark-2.1.0-bin-hadoop2.7.tgz 2.把文件解压到/usr/local目录下,解压之后的效果,Hadoop和Spark都在Hadoop用户下 下面的操作都在Hadoop用户下 drwxrwxrwx 13 hadoop hadoop 4096 4月   4 11:50 spark-2.1.0-bin-without-hadoop/ 添加Hadoop用户和用户组 $ su…
Spark Streaming学习笔记 liunx系统的习惯创建hadoop用户在hadoop根目录(/home/hadoop)上创建如下目录app 存放所有软件的安装目录 app/tmp 存放临时文件 data 存放测试数据lib 存放开发用的jar包software 存放软件安装包的目录source 存放框架源码 hadoop生态系统 CDH5.7.x地址:http://archive.cloudera.com/cdh5/cdh/5/ 需求:统计主站每个课程访问的客户端,地域信息分布地域:i…
Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报  分类: Spark(8)  版权声明:本文为博主原创文章,未经博主允许不得转载. Spark GraphX是一个分布式图处理框架,Spark GraphX基于Spark平台提供对图计算和图挖掘简洁易用的而丰富多彩的接口,极大的方便了大家对分布式图处理的需求.Spark GraphX由于底层是基于Spark来处理的,所以天然就是一个分布式…