In this post I will run SAS example Logistic Regression Random-Effects Model in four R based solutions; Jags, STAN, MCMCpack and LaplacesDemon. To quote the SAS manual: 'The data are taken from Crowder (1978). The Seeds data set is a 2 x 2 factorial…
最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其理论部分参考:http://www.cnblogs.com/ljy2013/p/5129610.html 下面我们跟随我的demo来一步一步解剖源码,首先来看一下我的demo: package org.apache.spark.mllib.classification import org.apac…
logistic distribution 设X是连续随机变量,X服从逻辑斯谛分布是指X具有下列分布函数和密度函数: 式中,μ为位置参数,γ>0为形状参数. 密度函数是脉冲函数 分布函数是一条Sigmoid曲线(sigmoid curve)即为阶跃函数     二项逻辑斯谛回归模型 二项逻辑斯谛回归模型是如下的条件概率分布 x∊Rn是输入,Y∊{0,1}是输出,w∊Rn和b∊R是参数, w称为权值向量,b称为偏置,w·x为w和x的内积. 可以求得P(Y=1|x)和P(Y=0|x). 逻辑斯谛回归…
Logistic Regression and Gradient Descent Logistic regression is an excellent tool to know for classification problems. Classification problems are problems where you are trying to classify observations into groups. To make our examples more concrete,…
1 线性回归 回归就是对已知公式的未知参数进行估计.线性回归就是对于多维空间中的样本点,用特征的线性组合去拟合空间中点的分布和轨迹,比如已知公式是y=a∗x+b,未知参数是a和b,利用多真实的(x,y)训练数据对a和b的取值去自动估计.估计的方法是在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值,直到找到那个最符合样本点分布的参数(或参数组合).也就是给定训练样本,拟合参数的过程,对y= a*x + b来说这就是有一个特征x两个参数a b,多个样本的话比如…
前言: 本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html.这里给出的训练样本的特征为80个学生的两门功课的分数,样本值为对应的同学是否允许被上大学,如果是允许的话则用'1'表示,否则不允许就用'0'表示,这是一个典型的二分类问题.在此问题中,给出的80个…
This post builds on a previous post, but can be read and understood independently. As part of my course on statistical learning, we created 3D graphics to foster a more intuitive understanding of the various methods that are used to relax the assumpt…
This semester I'm teaching from Hastie, Tibshirani, and Friedman's book, The Elements of Statistical Learning, 2nd Edition. The authors provide aMixture Simulation data set that has two continuous predictors and a binary outcome. This data is used to…
本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https://cran.r-project.org/web/packages/softmaxreg/index.html ------------------------------------------------------------------ 一.介绍 Softmax Regression模型本质还是…
Author: 相忠良(Zhong-Liang Xiang) Email: ugoood@163.com Date: Sep. 23st, 2017 根据 Andrew Ng 老师的深度学习课程课后作业及指导,参照吴老师代码完成了这个LR的coding. (重要)吴老师建议,数据应组织成下列形式,有利于扫除编程bug: X.shape = (n_x, m), n_x是样本维度,m是样本个数 Y.shape = (1, m) w, b应该分开,其中: b is a scaler w.shape =…
   Classification 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本人的一份学习总结,也希望和朋友们进行交流学习. 该书是The Elements of Statistical Learning 的R语言简明版,包含了对算法的简明介绍以及其R实现,最让我感兴趣的是算法的R语言实现. [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/…
分类是机器学习的一个基本问题, 基本原则就是将某个待分类的事情根据其不同特征划分为两类. Email: 垃圾邮件/正常邮件 肿瘤: 良性/恶性 蔬菜: 有机/普通 对于分类问题, 其结果 y∈{0,1}, 即只有正类或负类. 对于预测蔬菜是否为有机这件事, y = 0表示蔬菜为普通, y= 1表示蔬菜为有机. 逻辑回归是分类问题中的一个基本算法, 它的猜想函数hθ(x) = g(θT*x) 其中, g(z) = 1 / (1+e-z), 该函数称为sigmoid函数或logistic函数, 是一…
ex2data1.txt ex2data2.txt 本次算法的背景是,假如你是一个大学的管理者,你需要根据学生之前的成绩(两门科目)来预测该学生是否能进入该大学. 根据题意,我们不难分辨出这是一种二分类的逻辑回归,输入x有两种(科目1与科目2),输出有两种(能进入本大学与不能进入本大学).输入测试样例以已经本文最前面贴出分别有两组数据. 我们在进行逻辑回归之前,通常想把数据数据更为直观的显示出来,那么我们根据输入样例绘制图像. function plotData(X, y) %PLOTDATA…
Logistic Regression with a Neural Network mindset You will learn to: Build the general architecture of a learning algorithm, including: Initializing parameters(初始化参数) Calculating the cost function and its gradient(计算代价函数,和他的梯度) Using an optimization…
1. 原理 Cost function Theta 2. Python # -*- coding:utf8 -*- import numpy as np import matplotlib.pyplot as plt def cost_function(input_X, _y, theta): """ cost function of binary classification using logistic regression :param input_X: np.matr…
%% ============ Part : Compute Cost and Gradient ============ % In this part of the exercise, you will implement the cost and gradient % for logistic regression. You neeed to complete the code in % costFunction.m % Setup the data matrix appropriately…
Handwritten digits recognition (0-9) Multi-class Logistic Regression 1. Vectorizing Logistic Regression (1) Vectorizing the cost function (2) Vectorizing the gradient (3) Vectorizing the regularized cost function (4) Vectorizing the regularized gradi…
1. Sigmoid Function In Logisttic Regression, the hypothesis is defined as: where function g is the sigmoid function. The sigmoid function is defined as: 2.Cost function and gradient The cost function in logistic regression is: the gradient of the cos…
代码及数据:https://github.com/zle1992/MachineLearningInAction logistic regression 优点:计算代价不高,易于理解实现,线性模型的一种. 缺点:容易欠拟合,分类精度不高.但是可以用于预测概率. 适用数据范围:数值型和标称型. 准备数据: def loadDataSet(): dataMat,labelMat = [],[] with open(filename,"r") as fr: #open file for li…
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_variance_score) 4 中值绝对误差(Median absolute error) 5 R2 决定系数(拟合优度) 模型越好:r2→1 模型越差:r2→0 二 逻辑斯蒂回归 1 概述 在逻辑斯蒂回归中,我们将会采用sigmoid函数作为激励函数,所以它被称为sigmoid回归或对数几率回归…
1. Sigmoid function function g = sigmoid(z) %SIGMOID Compute sigmoid function % g = SIGMOID(z) computes the sigmoid of z. % You need to return the following variables correctly g = zeros(size(z)); % ====================== YOUR CODE HERE =============…
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行分类出现了错误:而且线性回归计算的结果往往会远小于0或者远大于1,这对于0,1分类变得很奇怪.可见线性回归并不适用与分类.下面介绍的逻辑回归的结果总是在[0,1],适用于分类,其实逻辑回归是一种分类算法. 2 假设函数Hypothesis Representation 逻辑回归假设函数为: 其中 是…
logistic 回归 1.问题: 在上面讨论回归问题时.讨论的结果都是连续类型.但假设要求做分类呢?即讨论结果为离散型的值. 2.解答: 假设: 当中: g(z)的图形例如以下: 由此可知:当hθ(x)<0.5时我们能够觉得为0,反之为1,这样就变成离散型的数据了. 推导迭代式: 利用概率论进行推导,找出样本服从的分布类型,利用最大似然法求出对应的θ 因此: 结果: 注意:这里的迭代式增量迭代法 Newton迭代法: 1.问题: 上述迭代法,收敛速度非常慢,在利用最大似然法求解的时候能够运用N…
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏.        Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别).        回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率. 逻辑回归--优缺点 优…
Linear and Logistic Regression in TensorFlow Graphs and sessions TF Ops: constants, variables, functions TensorBoard Lazy loading Linear Regression: Predict life expectancy from birth rate Let's start with a simple linear regression example. I hope y…
logistic regression model LR softmax classification Fly logistic regression model loss fuction softmax 基于python的logistic regression代码 logistic regression model 逻辑回归模型一般指的是二项分类的逻辑回归模型,也是非常经典的模型,它主要的决策函数是,给定数据的情况下,来求取Y属于1或者0的概率.具体的,我们可以做如下表示: 这里, 是输入,…
要解决的问题是,给出了具有2个特征的一堆训练数据集,从该数据的分布可以看出它们并不是非常线性可分的,因此很有必要用更高阶的特征来模拟.例如本程序中个就用到了特征值的6次方来求解. Data To begin, load the files 'ex5Logx.dat' and ex5Logy.dat' into your program. This dataset represents the training set of a logistic regression problem with t…
Data For this exercise, suppose that a high school has a dataset representing 40 students who were admitted to college and 40 students who were not admitted. Each  training example contains a student's score on two standardized exams and a label of w…
logistic regression是分类算法中非常重要的算法,也是非常基础的算法.logistic regression从整体上考虑样本预测的精度,用判别学习模型的条件似然进行参数估计,假设样本遵循iid,参数估计时保证每个样本的预测值接近真实值的概率最大化.这样的结果,只能是牺牲一部分的精度来换取另一部分的精度.而svm从局部出发,假设有一个分类平面,找出所有距离分类平面的最近的点(support vector,数量很少),让这些点到平面的距离最大化,那么这个分类平面就是最佳分类平面.从这…
一:逻辑回归(Logistic Regression) 背景:假设你是一所大学招生办的领导,你依据学生的成绩,给与他入学的资格.现在有这样一组以前的数据集ex2data1.txt,第一列表示第一次测验的分数,第二列表示第二次测验的分数,第三列1表示允许入学,0表示不允许入学.现在依据这些数据集,设计出一个模型,作为以后的入学标准. 我们通过可视化这些数据集,发现其与某条直线方程有关,而结果又只有两类,故我们接下来使用逻辑回归去拟合该数据集. 1,回归方程的脚本ex2.m: %% Machine…