import numpy as np import pandas as pd import os import matplotlib.pyplot as pl import seaborn as sns import warnings warnings.filterwarnings('ignore') data = pd.read_csv('F:\\kaggleDataSet\\MedicalCostPersonal\\insurance.csv') data.head() data.isnul…
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np…
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import matplotlib.p…
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np…
# import pandas import pandas as pd # creating a DataFrame pd.DataFrame({'Yes': [50, 31], 'No': [101, 2]}) # another example of creating a dataframe pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland']}) pd.DataFram…
import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data visualization import matplotlib.pyplot as plt # Data Visualization import matplotlib.gridspec as gridspec # subplots and grid from wordcloud import Wor…
import os import numpy as np import pandas as pd from datetime import datetime import matplotlib import matplotlib.pyplot as plt import seaborn as sns sns.set_style('white') %matplotlib inline %load_ext autoreload %autoreload 2 def to_utms(ut): retur…
import pandas as pd pd.DataFrame({'Yes': [50, 21], 'No': [131, 2]}) pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']}) pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']},…
#We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler from sklearn.metrics impo…
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns %matplotlib inline np.random.seed(2) from sklearn.model_selection import train_test_split from sklearn.metrics import confus…