【译】Apache Flink Kafka consumer】的更多相关文章

转载自 huxihx,原文链接 Apache Flink Kafka consumer Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义.在具体的实现过程中,Flink不依赖于Kafka内置的消费组位移管理,而是在内部自行记录和维护consumer的位移. 用户在使用时需要根据Kafka版本来选择相应的connector,如下表所示: Maven依…
Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义.在具体的实现过程中,Flink不依赖于Kafka内置的消费组位移管理,而是在内部自行记录和维护consumer的位移. 用户在使用时需要根据Kafka版本来选择相应的connector,如下表所示: Maven依赖 支持的最低Flink版本 Kafka客户端类名 说明 flink-connector…
本文是翻译作品,作者是Piotr Nowojski和Michael Winters.前者是该方案的实现者. 原文地址是https://data-artisans.com/blog/end-to-end-exactly-once-processing-apache-flink-apache-kafka 2017年12月Apache Flink社区发布了1.4版本.该版本正式引入了一个里程碑式的功能:两阶段提交Sink,即TwoPhaseCommitSinkFunction.该SinkFunctio…
转载自 huxihx,原文链接 [译]Flink + Kafka 0.11端到端精确一次处理语义的实现 本文是翻译作品,作者是Piotr Nowojski和Michael Winters.前者是该方案的实现者. 原文地址是An Overview of End-to-End Exactly-Once Processing in Apache Flink® (with Apache Kafka, too!). 目录 一.Flink应用的EOS二.Flink实现EOS应用三.Flink中实现两阶段提交…
Flink Kafka Connector 是 Flink 内置的 Kafka 连接器,它包含了从 Kafka Topic 读入数据的 Flink Kafka Consumer 以及向 Kafka Topic 写出数据的 Flink Kafka Producer,除此之外 Flink Kafa Connector 基于 Flink Checkpoint 机制提供了完善的容错能力.本文从 Flink Kafka Connector 的基本使用到 Kafka 在 Flink 中端到端的容错原理展开讨…
01 Mar 2018 Piotr Nowojski (@PiotrNowojski) & Mike Winters (@wints) This post is an adaptation of Piotr Nowojski’s presentation from Flink Forward Berlin 2017. You can find the slides and a recording of the presentation on the Flink Forward Berlin we…
1.目标 在我们的上一篇文章中,我们讨论了Kafka Producer.今天,我们将讨论Kafka Consumer.首先,我们将看到什么是Kafka Consumer和Kafka Consumer的例子.之后,我们将学习Kafka Consumer Group.此外,我们将看到Kafka Consumer的消费者记录API和配置设置.创建Kafka Producer后,将消息发送到Apache Kafka集群.现在,我们正在创建一个Kafka Consumer来使用来自Kafka集群的消息.所…
1. Poll Messages 在Kafka Consumer 中消费messages时,使用的是poll模型,也就是主动去Kafka端取数据.其他消息管道也有的是push模型,也就是服务端向consumer推送数据,consumer仅需等待即可. Kafka Consumer的poll模型使得consumer可以控制从log的指定offset去消费数据.消费数据的速度.以及replay events的能力. Kafka Consumer 的poll模型工作如下图: ·       Consu…
1. Flink Flink介绍: Flink 是一个针对流数据和批数据的分布式处理引擎.它主要是由 Java 代码实现.目前主要还是依靠开源社区的贡献而发展.对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已.再换句话说,Flink 会把所有任务当成流来处理,这也是其最大的特点.Flink 可以支持本地的快速迭代,以及一些环形的迭代任务. Flink的特性: Flink是个分布式流处理开源框架: 1>. 即使数据源是无序的或者晚到达的数据,也能保持结果准确…
January 11, 2018- Apache Flink Robert Metzger and Chris Ward A favorite session from Flink Forward Berlin 2017 was Robert Metzger’s “Keep It Going: How to Reliably and Efficiently Operate Apache Flink”. One of the topics that Robert touches on is how…
试验环境 Windows:IDEA Linux:Kafka,Zookeeper POM和Demo <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLoc…
https://mp.weixin.qq.com/s/nQOxsZUZSiPi7Sx40mgwsA 20181104 3 differences between Savepoints and Checkpoints in Apache Flink data-artisans Flink 昨天 This episode of our Flink Friday Tip explains what Savepoints and Checkpoints are and examines the main…
Flink+Kafka整合实例 1.使用工具Intellig IDEA新建一个maven项目,为项目命名为kafka01. 2.我的pom.xml文件配置如下. <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSch…
转载请注明原创地址:http://www.cnblogs.com/dongxiao-yang/p/7200971.html 最近需要研究flink-connector-kafka的消费行为,发现flink使用了kafka consumer一个比较底层一点的assign接口而不是之前比较常用的subscirbe,于是研究下二者之间的差异. 首先看api文档:http://kafka.apache.org/0110/javadoc/index.html?org/apache/kafka/client…
Apache Flink: Apache Flink 1.5.0 Release Announcement https://flink.apache.org/news/2018/05/25/release-1.5.0.html Apache Flink 1.5.0 Release Announcement 25 May 2018 Fabian Hueske (@fhueske) The Apache Flink community is thrilled to announce the 1.5.…
感谢王祥虎@wangxianghu 投稿 Apache Hudi是由Uber开发并开源的数据湖框架,它于2019年1月进入Apache孵化器孵化,次年5月份顺利毕业晋升为Apache顶级项目.是当前最为热门的数据湖框架之一. 1. 为何要解耦 Hudi自诞生至今一直使用Spark作为其数据处理引擎.如果用户想使用Hudi作为其数据湖框架,就必须在其平台技术栈中引入Spark.放在几年前,使用Spark作为大数据处理引擎可以说是很平常甚至是理所当然的事.因为Spark既可以进行批处理也可以使用微批…
Kafka 0.9版本开始推出了Java版本的consumer,优化了coordinator的设计以及摆脱了对zookeeper的依赖.社区最近也在探讨正式用这套consumer API替换Scala版本的consumer的计划.鉴于目前这方面的资料并不是很多,本文将尝试给出一个利用KafkaConsumer编写的多线程消费者实例,希望对大家有所帮助.     这套API最重要的入口就是KafkaConsumer(o.a.k.clients.consumer.KafkaConsumer),普通的…
In this post, we will dive into the consumer side of this application ecosystem, which means looking closely at Kafka consumer group monitoring. Read on to find out more. In our previous blog, we talked about monitoring Kafka as a broker service, loo…
Where did we come from? With the 0.9.0-milestone1 release, Apache Flink added an API to process relational data with SQL-like expressions called the Table API. The central concept of this API is a Table, a structured data set or stream on which relat…
Flink 剖析 1.概述 在如今数据爆炸的时代,企业的数据量与日俱增,大数据产品层出不穷.今天给大家分享一款产品—— Apache Flink,目前,已是 Apache 顶级项目之一.那么,接下来,笔者为大家介绍Flink 的相关内容. 2.内容 2.1 What's Flink Apache Flink 是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算方案,会把流处…
在上一篇<Kafka Consumer多线程实例>中我们讨论了KafkaConsumer多线程的两种写法:多KafkaConsumer多线程以及单KafkaConsumer多线程.在第二种用法中我使用的是自动提交的方式,省去了多线程提交位移的麻烦.很多人跑来问如果是手动提交应该怎么写?由于KafkaConsumer不是线程安全的,因此我们不能简单地在多个线程中直接调用consumer.commitSync来提交位移.本文将给出一个实际的例子来模拟多线程消费以及手动提交位移. 本例中包含3个类:…
https://www.ibm.com/developerworks/cn/opensource/os-cn-apache-flink/index.html 大数据计算引擎的发展 这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop.Storm,以及后来的 Spark,他们都有着各自专注的应用场景.Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计算的飞速发展.Spark 的火热或多或少的掩盖了其他分布式计算的系统身影.就像 Flink,也就在这个时候默默的发…
This post originally appeared on the Apache Flink blog. It was reproduced here under the Apache License, Version 2.0. This blog post provides an introduction to Apache Flink’s built-in monitoring and metrics system, that allows developers to effectiv…
感谢英文原文作者:https://data-artisans.com/blog/a-practical-guide-to-broadcast-state-in-apache-flink 不过,原文最近好像不能访问了.应该是https://www.da-platform.com/网站移除了blog板块了. 从版本1.5.0开始,Apache FlinkⓇ具有一种新的状态,称为广播状态. 在这篇文章中,我们解释了广播状态是什么,并展示了如何将其应用于评估事件流上的动态模式的应用程序的示例.我们将引导…
 2016-04-30 22:24:39    Yanjun Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为他们它们所提供的SLA是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理,所以在实现的时候通常是分别给出两套实现方法,或者通过一个独…
一.设计思想及介绍 基本思想:“一切数据都是流,批是流的特例” 1.Micro Batching 模式 在Micro-Batching模式的架构实现上就有一个自然流数据流入系统进行攒批的过程,这在一定程度上就增加了延时.具体如下示意图: 2.Native Streaming 模式 Native Streaming 计算模式每条数据的到来都进行计算,这种计算模式显得更自然,并且延时性能达到更低.具体如下示意图: 很明显Native Streaming模式占据了流计算领域 "低延时" 的核…
1.Consumer Group 与 topic 订阅 每个Consumer 进程都会划归到一个逻辑的Consumer Group中,逻辑的订阅者是Consumer Group.所以一条message可以被多个订阅message 所在的topic的每一个Consumer Group,也就好像是这条message被广播到每个Consumer Group一样.而每个Consumer Group中,类似于一个Queue(JMS中的Queue)的概念差不多,即一条消息只会被Consumer Group中…
先上代码: table = tablexx.select('*).tablexx.groupBy('x).select('x, xx.count ) tableEnvironment // declare the external system to connect to .connect( new Kafka() .version("0.10") .topic("test-input") .startFromEarliest() .property("z…
https://www.elastic.co/cn/blog/building-real-time-dashboard-applications-with-apache-flink-elasticsearch-and-kibana Fabian Hueske Share Gaining actionable insights from continuously produced data in real-time is a common requirement for many business…
Apache Flink是一个高效.分布式.基于Java实现的通用大数据分析引擎,它具有分布式 MapReduce一类平台的高效性.灵活性和扩展性以及并行数据库查询优化方案,它支持批量和基于流的数据分析,且提供了基于Java和Scala的API.从Apache官方博客中得知,Flink已于近日升级成为Apache基金会的顶级项目.Flink项目的副总裁对此评论到: Flink能够成为基金会的顶级项目,自己感到非常高兴.自己认为社区的驱动将是Flink成长的最好保证.Flink逐渐的成长以及众多新…