import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def load_data():
'''
加载用于分类问题的数据集。数据集采用 scikit-learn 自带的 iris 数据集
'''
# scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
X_train=iris.data
y_train=iris.target
return train_test_split(X_train, y_train,test_size=0.25,random_state=0,stratify=y_train) #分类决策树DecisionTreeClassifier模型
def test_DecisionTreeClassifier(*data):
X_train,X_test,y_train,y_test=data
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
print("Training score:%f"%(clf.score(X_train,y_train)))
print("Testing score:%f"%(clf.score(X_test,y_test))) # 产生用于分类问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_DecisionTreeClassifier
test_DecisionTreeClassifier(X_train,X_test,y_train,y_test)

def test_DecisionTreeClassifier_criterion(*data):
'''
测试 DecisionTreeClassifier 的预测性能随 criterion 参数的影响
'''
X_train,X_test,y_train,y_test=data
criterions=['gini','entropy']
for criterion in criterions:
clf = DecisionTreeClassifier(criterion=criterion)
clf.fit(X_train, y_train)
print("criterion:%s"%criterion)
print("Training score:%f"%(clf.score(X_train,y_train)))
print("Testing score:%f"%(clf.score(X_test,y_test))) # 调用 test_DecisionTreeClassifier_criterion
test_DecisionTreeClassifier_criterion(X_train,X_test,y_train,y_test)

def test_DecisionTreeClassifier_splitter(*data):
'''
测试 DecisionTreeClassifier 的预测性能随划分类型的影响
'''
X_train,X_test,y_train,y_test=data
splitters=['best','random']
for splitter in splitters:
clf = DecisionTreeClassifier(splitter=splitter)
clf.fit(X_train, y_train)
print("splitter:%s"%splitter)
print("Training score:%f"%(clf.score(X_train,y_train)))
print("Testing score:%f"%(clf.score(X_test,y_test))) # 调用 test_DecisionTreeClassifier_splitter
test_DecisionTreeClassifier_splitter(X_train,X_test,y_train,y_test)

def test_DecisionTreeClassifier_depth(*data,maxdepth):
'''
测试 DecisionTreeClassifier 的预测性能随 max_depth 参数的影响
'''
X_train,X_test,y_train,y_test=data
depths=np.arange(1,maxdepth)
training_scores=[]
testing_scores=[]
for depth in depths:
clf = DecisionTreeClassifier(max_depth=depth)
clf.fit(X_train, y_train)
training_scores.append(clf.score(X_train,y_train))
testing_scores.append(clf.score(X_test,y_test)) ## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(depths,training_scores,label="traing score",marker='o')
ax.plot(depths,testing_scores,label="testing score",marker='*')
ax.set_xlabel("maxdepth")
ax.set_ylabel("score")
ax.set_title("Decision Tree Classification")
ax.legend(framealpha=0.5,loc='best')
plt.show() # 调用 test_DecisionTreeClassifier_depth
test_DecisionTreeClassifier_depth(X_train,X_test,y_train,y_test,maxdepth=100)

import os
import pydotplus from io import StringIO
from sklearn.tree import export_graphviz
from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor X_train,X_test,y_train,y_test=load_data()
clf = DecisionTreeClassifier()
clf.fit(X_train,y_train)
export_graphviz(clf,"F://out")

吴裕雄 python 机器学习——分类决策树模型的更多相关文章

  1. 吴裕雄 python 机器学习——回归决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  2. 吴裕雄 python 机器学习——核化PCAKernelPCA模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  3. 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  4. 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  5. 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  6. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  9. 吴裕雄 python 机器学习——模型选择分类问题性能度量

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets ...

随机推荐

  1. Spring Boot - AMQP 消息中间件

    Message Broker是一种消息验证.传输.路由的架构模式,其设计目标主要应用于下面这些场景: 消息路由到一个或多个目的地 消息转化为其他的表现方式 执行消息的聚集.消息的分解,并将结果发送到他 ...

  2. HD,3G视频数据中行号的插入方法---Verilog代码实现

    HD,3G视频数据中行号的插入方法---Verilog代码实现 行号的生成: `timescale 1ns / 1ps //////////////////////////////////////// ...

  3. linux 中 && 及|| 判断原理

    [root@linuxprobe ~]# [ $USER = root ] && echo "root" || echo "user"root[ ...

  4. js 获取url中的参数 修改url 参数 移除url参数

    js 获取url中的参数 修改url 参数 移除url参数 var jsUrlHelper = { getUrlParam : function(url, ref) { var str = " ...

  5. Eureka入门案例

    1.整体思路 1.1.服务注册中心Eureka(可以是一个集群,对外暴露自己的地址) 1.2.服务提供者:启动后向Eureka注册自己的信息(地址,提供什么服务) 1.3.客户端消费者:向Eureka ...

  6. Centos 6.9 install Python3.7

    # install python3sudo yum -y updatesudo yum -y install yum-utils yum install -y zlib-devel bzip2-dev ...

  7. 京东饭粒捡漏V1.15

    20181105 更新 V1.151.部分BUG修复: 功能介绍1.京东商城专用,支持饭粒模式下单,自己获得京豆返利 2.捡漏模式:帮助用户监控抢购商品,有库存的时候进行抢单,主要是通过添加商品ID ...

  8. ELK + Filebeat 日志分析系统

    ELK + Filebeat 日志分析系统 架构图 环境 OS:CentOS 7.4 Filebeat: 6.3.2 Logstash: 6.3.2 Elasticsearch 6.3.2 Kiban ...

  9. Git常用的操作记录(自用)

    分支常用操作命令 $ git branch -a //查看分支 $ git checkout -b dev origin/master  //切换/创建分支 $ git branch -vv 或 gi ...

  10. 【转】Python 之 元类

    原文链接: https://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python      http://python.jo ...