# coding: utf-8

# In[1]:
import os
import numpy as np
from skimage import color, data, transform, io

# In[34]:

import tensorflow as tf
import numpy as np

train10_images = np.load('train10_images.npy')
train10_labels = np.load('train10_labels.npy')

y=tf.placeholder(tf.float32,[None,10])

def reformat(dataset, labels):
dataset = dataset.reshape((-1, 32, 32, 3)).astype(np.float32)
labels = (np.arange(10) == labels[:, None]).astype(np.float32)
return dataset, labels
train_x, train_y = reformat(train10_images, train10_labels)
## 配置神经网络的参数
n_classes = 10
batch_size = 64
kernel_h = kernel_w = 5
#dropout = 0.8
depth_in = 3
depth_out1 = 64
depth_out2 = 128
image_size = 32 ##图片尺寸
n_sample = len(train10_images) ##样本个数

x = tf.placeholder(tf.float32, [None, 32, 32, 3]) ##每张图片的像素大小为32*32
y_ = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) ##dropout的placeholder(解决过拟合)
fla = int((image_size * image_size / 16) * depth_out2) # 扁平化用到

##定义权重变量
Weights = {"con1_w": tf.Variable(tf.random_normal([kernel_h, kernel_w, depth_in, depth_out1])),
"con2_w": tf.Variable(tf.random_normal([kernel_h, kernel_w, depth_out1, depth_out2])),
"fc_w1": tf.Variable(tf.random_normal([int((image_size * image_size / 16) * depth_out2), 512])),
"fc_w2": tf.Variable(tf.random_normal([512, 128])), "out": tf.Variable(tf.random_normal([128, n_classes]))}

##定义偏置变量
bias = {"conv1_b": tf.Variable(tf.random_normal([depth_out1])), "conv2_b": tf.Variable(tf.random_normal([depth_out2])),
"fc_b1": tf.Variable(tf.random_normal([512])), "fc_b2": tf.Variable(tf.random_normal([128])),
"out": tf.Variable(tf.random_normal([n_classes]))}

## 定义卷积层的生成函数
def conv2d(x, W, b, stride=1):
x = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding="SAME")
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)

## 定义池化层的生成函数
def maxpool2d(x, stride=2):
return tf.nn.max_pool(x, ksize=[1, stride, stride, 1], strides=[1, stride, stride, 1], padding="SAME")

## 定义卷积神经网络生成函数
def conv_net(x, weights, biases, dropout):
## Convolutional layer 1(卷积层1)
with tf.name_scope('convLayer1'):
conv1 = conv2d(x, Weights['con1_w'], bias['conv1_b']) ##32*32*64
tf.summary.histogram('convLayer1/weights1', Weights['con1_w'])
tf.summary.histogram('convLayer1/bias1', bias['conv1_b'])
tf.summary.histogram('convLayer1/conv1', conv1)
pool1 = maxpool2d(conv1, 2) ##经过池化层1 shape:16*16*64

## Convolutional layer 2(卷积层2)
with tf.name_scope('convLayer2'):
conv2 = conv2d(pool1, Weights['con2_w'], bias['conv2_b']) ##16*16*128
tf.summary.histogram('convLayer2/weights2', Weights['con2_w'])
tf.summary.histogram('convLayer2/bias2', bias['conv2_b'])
tf.summary.histogram('convLayer2/conv2', conv2)
pool2 = maxpool2d(conv2, 2) ##经过池化层2 shape:8*8*128
tf.summary.histogram('ConvLayer2/pool2', pool2)

flatten = tf.reshape(pool2, [-1, fla]) ##Flatten层,扁平化处理
fc1 = tf.add(tf.matmul(flatten, Weights['fc_w1']), bias['fc_b1'])
fc1r = tf.nn.relu(fc1) ##经过relu激活函数

## Fully connected layer 2(全连接层2)
fc2 = tf.add(tf.matmul(fc1r, Weights['fc_w2']), bias['fc_b2']) ##计算公式:输出参数=输入参数*权值+偏置
fc2 = tf.nn.relu(fc2) ##经过relu激活函数
## Dropout(Dropout层防止预测数据过拟合)
fc2 = tf.nn.dropout(fc2, dropout)
## Output class prediction
prediction = tf.add(tf.matmul(fc2, Weights['out']), bias['out']) ##输出预测参数
return prediction

## 优化预测准确率 0.005
prediction = conv_net(x, Weights, bias, keep_prob) ##生成卷积神经网络
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) ##交叉熵损失函数
optimizer = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) ##选择优化器以及学习率
merged = tf.summary.merge_all()

## 评估模型
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

## 初始会话并开始训练过程
with tf.Session() as sess:
tf.global_variables_initializer().run()
# writer=tf.summary.FileWriter("./Fruits(0.001)",sess.graph)
for i in range(5):
for j in range(int(n_sample / batch_size) + 1):
start = (j * batch_size)
end = start + batch_size
x_ = train_x[start:end]
y_ = train_y[start:end]
##准备验证数据
sess.run(optimizer, feed_dict={x: x_, y: y_, keep_prob: 0.5})
loss, acc = sess.run([cross_entropy, accuracy], feed_dict={x: x_, y: y_, keep_prob: 1.})
print(
"Epoch:", '%04d' % (i + 1), "cost=", "{:.9f}".format(loss), "Training accuracy", "{:.5f}".format(acc*100))
print('Optimization Completed')

# coding: utf-8

import tensorflow as tf
from random import shuffle

INPUT_NODE = 32*32
OUT_NODE = 77
IMAGE_SIZE = 32
NUM_CHANNELS = 3
NUM_LABELS = 77
#第一层卷积层的尺寸和深度
CONV1_DEEP = 16
CONV1_SIZE = 5
#第二层卷积层的尺寸和深度
CONV2_DEEP = 32
CONV2_SIZE = 5
#全连接层的节点数
FC_SIZE = 512

def inference(input_tensor, train, regularizer):
#卷积
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.Variable(tf.random_normal([CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],stddev=0.1),name='weight')
tf.summary.histogram('convLayer1/weights1', conv1_weights)
conv1_biases = tf.Variable(tf.Variable(tf.random_normal([CONV1_DEEP])),name="bias")
tf.summary.histogram('convLayer1/bias1', conv1_biases)
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
tf.summary.histogram('convLayer1/conv1', conv1)
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
tf.summary.histogram('ConvLayer1/relu1', relu1)
#池化
with tf.variable_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
tf.summary.histogram('ConvLayer1/pool1', pool1)
#卷积
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.Variable(tf.random_normal([CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],stddev=0.1),name='weight')
tf.summary.histogram('convLayer2/weights2', conv2_weights)
conv2_biases = tf.Variable(tf.random_normal([CONV2_DEEP]),name="bias")
tf.summary.histogram('convLayer2/bias2', conv2_biases)
#卷积向前学习
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
tf.summary.histogram('convLayer2/conv2', conv2)
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
tf.summary.histogram('ConvLayer2/relu2', relu2)
#池化
with tf.variable_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
tf.summary.histogram('ConvLayer2/pool2', pool2)
#变型
pool_shape = pool2.get_shape().as_list()
#计算最后一次池化后对象的体积(数据个数\节点数\像素个数)
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
#根据上面的nodes再次把最后池化的结果pool2变为batch行nodes列的数据
reshaped = tf.reshape(pool2,[-1,nodes])

#全连接层
with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.Variable(tf.random_normal([nodes,FC_SIZE],stddev=0.1),name='weight')
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc1_weights))
fc1_biases = tf.Variable(tf.random_normal([FC_SIZE]),name="bias")
#预测
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
if(train):
fc1 = tf.nn.dropout(fc1,0.5)
#全连接层
with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.Variable(tf.random_normal([FC_SIZE,64],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc2_weights))
fc2_biases = tf.Variable(tf.random_normal([64]),name="bias")
#预测
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights)+fc2_biases)
if(train):
fc2 = tf.nn.dropout(fc2,0.5)
#全连接层
with tf.variable_scope('layer7-fc3'):
fc3_weights = tf.Variable(tf.random_normal([64,NUM_LABELS],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc3_weights))
fc3_biases = tf.Variable(tf.random_normal([NUM_LABELS]),name="bias")
#预测
logit = tf.matmul(fc2,fc3_weights)+fc3_biases
return logit

import keras
import time
from keras.utils import np_utils
import numpy as np

trainDataList = np.load("E:\\tmp\\train_imgages.npy")
trainLabelNum = np.load("E:\\tmp\\train_labels.npy")

X = trainDataList
Y = (np.arange(77) == trainLabelNum[:,None]).astype(np.float32)

batch_size = 10
n_classes=77
epochs=16#循环次数
learning_rate=1e-4
batch_num=int(np.shape(X)[0]/batch_size)
dropout=0.75

x=tf.placeholder(tf.float32,[None,32,32,3])
y=tf.placeholder(tf.float32,[None,n_classes])
# keep_prob = tf.placeholder(tf.float32)
#加载测试数据集
testDataList = np.load("E:\\tmp\\test_imgages.npy")
testLabelNum = np.load("E:\\tmp\\test_labels.npy")
test_X = testDataList
test_Y = (np.arange(77) == testLabelNum[:,None]).astype(np.float32)
back = 64
ro = int(len(test_X)/back)

#调用神经网络方法
pred=inference(x,1,"regularizer")
cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))

# 三种优化方法选择一个就可以
optimizer=tf.train.AdamOptimizer(1e-4).minimize(cost)
# train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
# train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(cost)

#将预测label与真实比较
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
#计算准确率
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
merged=tf.summary.merge_all()
#将tensorflow变量实例化
init=tf.global_variables_initializer()
start_time = time.time()

with tf.Session() as sess:
sess.run(init)
#保存tensorflow参数可视化文件
writer=tf.summary.FileWriter('C:/Fruit_graph', sess.graph)
for i in range(epochs):
for j in range(batch_num):
offset = (j * batch_size) % (Y.shape[0] - batch_size)
# 准备数据
batch_data = X[offset:(offset + batch_size), :]
batch_labels = Y[offset:(offset + batch_size), :]
sess.run(optimizer, feed_dict={x:batch_data,y:batch_labels})
result=sess.run(merged, feed_dict={x:batch_data,y:batch_labels})
writer.add_summary(result, i)
loss,acc = sess.run([cost,accuracy],feed_dict={x:batch_data,y:batch_labels})
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc*100))
writer.close()
print("########################训练结束,下面开始测试###################")
for i in range(ro):
s = i*back
e = s+back
test_accuracy = sess.run(accuracy,feed_dict={x:test_X[s:e],y:test_Y[s:e]})
print("step:%d test accuracy = %.4f%%" % (i,test_accuracy*100))
print("Final test accuracy = %.4f%%" % (test_accuracy*100))

end_time = time.time()
print('Times:',(end_time-start_time))
print('Optimization Completed')

吴裕雄 python神经网络 水果图片识别(4)的更多相关文章

  1. 吴裕雄 python神经网络 水果图片识别(5)

    #-*- coding:utf-8 -*-### required libaraiedimport osimport matplotlib.image as imgimport matplotlib. ...

  2. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  3. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  4. 吴裕雄 python神经网络 水果图片识别(1)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  5. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  7. 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow图片预处理

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读 ...

随机推荐

  1. urllib模块学习

    一.urllib库 概念:urllib是Python自带的一个用于爬虫的库,其主要作用就是可以通过代码模拟浏览器发送请求.其常被用到的子模块在Python3中的为urllib.request和urll ...

  2. ES6的学习记录

    1.let命令: 基本用法: ES6新增了let命令,用来声明变量.用法类似于var,但是所声明的变量只在let命令所在的代码块内有效. { let a = 10; var b = 1; } cons ...

  3. 用jQuery实现简单的简单的轮播图

    图片来源 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...

  4. Mybatis实现in查询(注解形式和xml形式)

    1. @Select注解中使用in @Select({"<script> " + " select * "+ " from busines ...

  5. JVM总结-synchronized

    在 Java 程序中,我们可以利用 synchronized 关键字来对程序进行加锁.它既可以用来声明一个 synchronized 代码块,也可以直接标记静态方法或者实例方法. 当声明 synchr ...

  6. jsfiddle将demo设置为public公开的

    jsfiddle的demo虽然可以通过链接分享给所有人,但是进入个人主页是没有的,需要将项目设置为公开public的 根据提示,打开demo项目页==>左侧菜单==>填写标题和描述==&g ...

  7. JQ获取地址栏参数

    //获取地址栏参数 function GetQueryString(name) { var reg = new RegExp("(^|&)" + name + " ...

  8. [转] 常用的CSS命名规则

    (一)常用的CSS命名规则  头:header  内容:content/container  尾:footer  导航:nav  侧栏:sidebar  栏目:column  页面外围控制整体布局宽度 ...

  9. Maven项目指定JDK版本

    <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> ...

  10. sql(Oracle)优化之索引

    原文:https://www.cnblogs.com/oraclestudy/articles/5779210.html 建立索引的目的是:l 提高对表的查询速度:l 对表有关列的取值进行检查. 注意 ...