import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageChops
from skimage import color,data,transform,io

#获取所有数据文件夹名称
fileList = os.listdir("F:\\data\\flowers")
trainDataList = []
trianLabel = []
testDataList = []
testLabel = []

for j in range(len(fileList)):
data = os.listdir("F:\\data\\flowers\\"+fileList[j])
testNum = int(len(data)*0.25)
while(testNum>0):
np.random.shuffle(data)
testNum -= 1
trainData = np.array(data[:-(int(len(data)*0.25))])
testData = np.array(data[-(int(len(data)*0.25)):])
for i in range(len(trainData)):
if(trainData[i][-3:]=="jpg"):
image = io.imread("F:\\data\\flowers\\"+fileList[j]+"\\"+trainData[i])
image=transform.resize(image,(64,64))
trainDataList.append(image)
trianLabel.append(int(j))
for i in range(len(testData)):
if(testData[i][-3:]=="jpg"):
image = io.imread("F:\\data\\flowers\\"+fileList[j]+"\\"+testData[i])
image=transform.resize(image,(64,64))
testDataList.append(image)
testLabel.append(int(j))
print("图片数据读取完了...")

print(np.shape(trainDataList))
print(np.shape(trianLabel))
print(np.shape(testDataList))
print(np.shape(testLabel))

print("正在写磁盘...")
np.save("G:\\trainDataList",trainDataList)
np.save("G:\\trianLabel",trianLabel)
np.save("G:\\testDataList",testDataList)
np.save("G:\\testLabel",testLabel)
print("数据处理完了...")

import numpy as np
from keras.utils import to_categorical

trainLabel = np.load("G:\\trianLabel.npy")
testLabel = np.load("G:\\testLabel.npy")
trainLabel_encoded = to_categorical(trainLabel)
testLabel_encoded = to_categorical(testLabel)
np.save("G:\\trianLabel",trainLabel_encoded)
np.save("G:\\testLabel",testLabel_encoded)
print("转码类别写盘完了...")

import random
import numpy as np

trainDataList = np.load("G:\\trainDataList.npy")
trianLabel = np.load("G:\\trianLabel.npy")
print("数据加载完了...")
trainIndex = [i for i in range(len(trianLabel))]
random.shuffle(trainIndex)
trainData = []
trainClass = []
for i in range(len(trainIndex)):
trainData.append(trainDataList[trainIndex[i]])
trainClass.append(trianLabel[trainIndex[i]])
print("训练数据shuffle完了...")
np.save("G:\\trainDataList",trainData)
np.save("G:\\trianLabel",trainClass)
print("训练数据写盘完毕...")

testDataList = np.load("G:\\testDataList.npy")
testLabel = np.load("G:\\testLabel.npy")
testIndex = [i for i in range(len(testLabel))]
random.shuffle(testIndex)
testData = []
testClass = []
for i in range(len(testIndex)):
testData.append(testDataList[testIndex[i]])
testClass.append(testLabel[testIndex[i]])
print("测试数据shuffle完了...")
np.save("G:\\testDataList",testData)
np.save("G:\\testLabel",testClass)
print("测试数据写盘完毕...")

# coding: utf-8

import tensorflow as tf
from random import shuffle

INPUT_NODE = 64*64
OUT_NODE = 5
IMAGE_SIZE = 64
NUM_CHANNELS = 3
NUM_LABELS = 5

#第一层卷积层的尺寸和深度
CONV1_DEEP = 16
CONV1_SIZE = 5
#第二层卷积层的尺寸和深度
CONV2_DEEP = 32
CONV2_SIZE = 5
#全连接层的节点数
FC_SIZE = 512

def inference(input_tensor, train, regularizer):
#卷积
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.Variable(tf.random_normal([CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],stddev=0.1),name='weight')
tf.summary.histogram('convLayer1/weights1', conv1_weights)
conv1_biases = tf.Variable(tf.Variable(tf.random_normal([CONV1_DEEP])),name="bias")
tf.summary.histogram('convLayer1/bias1', conv1_biases)
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
tf.summary.histogram('convLayer1/conv1', conv1)
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
tf.summary.histogram('ConvLayer1/relu1', relu1)
#池化
with tf.variable_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
tf.summary.histogram('ConvLayer1/pool1', pool1)
#卷积
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.Variable(tf.random_normal([CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],stddev=0.1),name='weight')
tf.summary.histogram('convLayer2/weights2', conv2_weights)
conv2_biases = tf.Variable(tf.random_normal([CONV2_DEEP]),name="bias")
tf.summary.histogram('convLayer2/bias2', conv2_biases)
#卷积向前学习
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
tf.summary.histogram('convLayer2/conv2', conv2)
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
tf.summary.histogram('ConvLayer2/relu2', relu2)
#池化
with tf.variable_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
tf.summary.histogram('ConvLayer2/pool2', pool2)
#变型
pool_shape = pool2.get_shape().as_list()
#计算最后一次池化后对象的体积(数据个数\节点数\像素个数)
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
#根据上面的nodes再次把最后池化的结果pool2变为batch行nodes列的数据
reshaped = tf.reshape(pool2,[-1,nodes])

#全连接层
with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.Variable(tf.random_normal([nodes,FC_SIZE],stddev=0.1),name='weight')
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc1_weights))
fc1_biases = tf.Variable(tf.random_normal([FC_SIZE]),name="bias")
#预测
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
if(train):
fc1 = tf.nn.dropout(fc1,0.5)
#全连接层
with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.Variable(tf.random_normal([FC_SIZE,64],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc2_weights))
fc2_biases = tf.Variable(tf.random_normal([64]),name="bias")
#预测
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights)+fc2_biases)
if(train):
fc2 = tf.nn.dropout(fc2,0.5)
#全连接层
with tf.variable_scope('layer7-fc3'):
fc3_weights = tf.Variable(tf.random_normal([64,NUM_LABELS],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc3_weights))
fc3_biases = tf.Variable(tf.random_normal([NUM_LABELS]),name="bias")
#预测
logit = tf.matmul(fc2,fc3_weights)+fc3_biases
return logit

import time
import keras
import numpy as np
from keras.utils import np_utils

X = np.load("G:\\trainDataList.npy")
Y = np.load("G:\\trianLabel.npy")
print(np.shape(X))
print(np.shape(Y))
print(np.shape(testData))
print(np.shape(testLabel))

batch_size = 10
n_classes=5
epochs=16#循环次数
learning_rate=1e-4
batch_num=int(np.shape(X)[0]/batch_size)
dropout=0.75

x=tf.placeholder(tf.float32,[None,64,64,3])
y=tf.placeholder(tf.float32,[None,n_classes])
# keep_prob = tf.placeholder(tf.float32)
#加载测试数据集
test_X = np.load("G:\\testDataList.npy")
test_Y = np.load("G:\\testLabel.npy")
back = 64
ro = int(len(test_X)/back)

#调用神经网络方法
pred=inference(x,1,"regularizer")
cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))

# 三种优化方法选择一个就可以
optimizer=tf.train.AdamOptimizer(1e-4).minimize(cost)
# train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
# train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(cost)

#将预测label与真实比较
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
#计算准确率
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
merged=tf.summary.merge_all()
#将tensorflow变量实例化
init=tf.global_variables_initializer()
start_time = time.time()

with tf.Session() as sess:
sess.run(init)
#保存tensorflow参数可视化文件
writer=tf.summary.FileWriter('F:/Flower_graph', sess.graph)
for i in range(epochs):
for j in range(batch_num):
offset = (j * batch_size) % (Y.shape[0] - batch_size)
# 准备数据
batch_data = X[offset:(offset + batch_size), :]
batch_labels = Y[offset:(offset + batch_size), :]
sess.run(optimizer, feed_dict={x:batch_data,y:batch_labels})
result=sess.run(merged, feed_dict={x:batch_data,y:batch_labels})
writer.add_summary(result, i)
loss,acc = sess.run([cost,accuracy],feed_dict={x:batch_data,y:batch_labels})
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc*100))
writer.close()
print("########################训练结束,下面开始测试###################")
for i in range(ro):
s = i*back
e = s+back
test_accuracy = sess.run(accuracy,feed_dict={x:test_X[s:e],y:test_Y[s:e]})
print("step:%d test accuracy = %.4f%%" % (i,test_accuracy*100))
print("Final test accuracy = %.4f%%" % (test_accuracy*100))

end_time = time.time()
print('Times:',(end_time-start_time))
print('Optimization Completed')

...................................

吴裕雄 python神经网络 花朵图片识别(10)的更多相关文章

  1. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  2. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  3. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  4. 吴裕雄 python神经网络 水果图片识别(5)

    #-*- coding:utf-8 -*-### required libaraiedimport osimport matplotlib.image as imgimport matplotlib. ...

  5. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  6. 吴裕雄 python神经网络 水果图片识别(1)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  7. 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow图片预处理

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读 ...

随机推荐

  1. C#的两种类据类型:值类型和引用类型

    注:引用类型相等赋值是地址赋值,不是值赋值. 什么是值类型,什么是引用类型 概念:值类型直接存储其值,而引用类型存储对其值的引用.部署:托管堆上部署了所有引用类型. 引用类型:基类为Objcet 值类 ...

  2. CF1017G The Tree

    /* 这是什么神仙题目QAQ 首先考虑在序列上的问题 先不考虑修改成白色, 一个白点能r被染成黑色 意味着能够找到一个l使得在l-r中的操作1次数大于等于 r - l + 1 我们把初始值覆盖成-1就 ...

  3. Java并发知识整理

    整理了一下前段时间学习Java并发的笔记,大约有40篇. 1. Java并发基础知识 并发基础(一) 线程介绍 并发基础(二) Thread类的API总结 并发基础(三) java线程优先级 并发基础 ...

  4. 零基础学习python_魔法方法(41-48课)(迭代器)

    接下来这个为啥要叫魔法方法呢,额,这个嘛我是跟小甲鱼的视频取的名字一样的,因为会讲比较多杂的东西,有... 魔法方法详细阅读地址:http://bbs.fishc.com/thread-48793-1 ...

  5. BZOJ2321 [BeiJing2011集训] 星器

    2321: [BeiJing2011集训]星器 Time Limit: 1 Sec  Memory Limit: 128 MB Description Magic Land上的时间又过了若干世纪…… ...

  6. 对datetime日期类型进行序列化的处理

    datetime类型序列化 在工作中遇到从数据库中取出来一个datetime类型的数据,在对其进行序列化的过程中,报错python datetime.datetime is not JSON  ser ...

  7. 12.通过微信小程序端访问企查查(采集工商信息)

    需要注意的问题: 一.1.微信端访问企查查小程序需要登录.2.访问抓包获取的url是有时效性的过一段时间就不能用了. http://xcx.qichacha.com/wxa/v1/base/getEn ...

  8. Maven上传jar包到私服

    1.认证,在M2_HOME/conf/settings.xml配置用户名密码 <server> <id>releases</id> <username> ...

  9. <转载>C#与JAVA的区别 http://www.cnblogs.com/Asa-Zhu/archive/2012/11/08/2761114.html

    C#(C-Sharp)是Microsoft的新编程语言,被誉为“C/C++家族中第一种面向组件的语言”.然而,不管它自己宣称的是什么,许多人认为C#更像是Java的一种克隆,或者是Microsoft用 ...

  10. 如何在github上创建仓库,并将本地的文件上传到对应的远程仓库

    1.安装git,可从 http://www.bootcss.com/p/git-guide/下载git 2.在github上创建仓库,注意不勾选Initialize this repository w ...