import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import color,data,transform,io

labelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training")
allFruitsImageName = []
for i in range(len(labelList)):
allFruitsImageName.append(os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]))
allsortImageName = []
for i in range(len(allFruitsImageName)):
oneClass = allFruitsImageName[i]
nr = []
r = []
r2 = []
for i in range(len(oneClass)):
if(oneClass[i].split("_")[0].isdigit()):
nr.append(int(oneClass[i].split("_")[0]))
else:
if(len(oneClass[i].split("_")[0])==1):
r.append(int(oneClass[i].split("_")[1]))
else:
r2.append(int(oneClass[i].split("_")[1]))
sortnr = sorted(nr)
sortnrImageName = []
for i in range(len(sortnr)):
sortnrImageName.append(str(sortnr[i])+"_100.jpg")
sortr = sorted(r)
sortrImageName = []
for i in range(len(sortr)):
sortrImageName.append("r_"+str(sortr[i])+"_100.jpg")
sortr2 = sorted(r2)
sortr2ImageName = []
for i in range(len(sortr2)):
sortr2ImageName.append("r2_"+str(sortr2[i])+"_100.jpg")
sortnrImageName.extend(sortrImageName)
sortnrImageName.extend(sortr2ImageName)
allsortImageName.append(sortnrImageName)

trainData = []
for i in range(len(allsortImageName)):
one = []
for j in range(len(allsortImageName[i])):
rgb=io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]+"\\" + allsortImageName[i][j]) #读取图片
gray=color.rgb2gray(rgb) #将彩色图片转换为灰度图片
dst=transform.resize(gray,(64,64)) #调整大小,图像分辨率为64*64
one.append(dst)
trainData.append(one)
print(np.shape(trainData))

trainLabelNum = []
for i in range(len(trainData)):
for j in range(len(trainData[i])):
trainLabelNum.append(i)
imageGray = trainData[i][j]
io.imsave("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage\\"+str(i)+"_"+str(j)+".jpg",imageGray)
np.save("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainLabelNum",trainLabelNum)
print("图片处理完了")

testLabelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test")
testallFruitsImageName = []
for i in range(len(testLabelList)):
testallFruitsImageName.append(os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test\\"+testLabelList[i]))
testallsortImageName = []
for i in range(len(testallFruitsImageName)):
oneClass = testallFruitsImageName[i]
nr = []
r = []
r2 = []
for i in range(len(oneClass)):
if(oneClass[i].split("_")[0].isdigit()):
nr.append(int(oneClass[i].split("_")[0]))
else:
if(len(oneClass[i].split("_")[0])==1):
r.append(int(oneClass[i].split("_")[1]))
else:
r2.append(int(oneClass[i].split("_")[1]))
sortnr = sorted(nr)
sortnrImageName = []
for i in range(len(sortnr)):
sortnrImageName.append(str(sortnr[i])+"_100.jpg")
sortr = sorted(r)
sortrImageName = []
for i in range(len(sortr)):
sortrImageName.append("r_"+str(sortr[i])+"_100.jpg")
sortr2 = sorted(r2)
sortr2ImageName = []
for i in range(len(sortr2)):
sortr2ImageName.append("r2_"+str(sortr2[i])+"_100.jpg")
sortnrImageName.extend(sortrImageName)
sortnrImageName.extend(sortr2ImageName)
testallsortImageName.append(sortnrImageName)

testData = []
for i in range(len(testallsortImageName)):
one = []
for j in range(len(testallsortImageName[i])):
rgb=io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Test\\"+testLabelList[i]+"\\" + testallsortImageName[i][j])
gray=color.rgb2gray(rgb)
dst=transform.resize(gray,(64,64))
one.append(dst)
testData.append(one)
print(np.shape(testData))

testLabelNum = []
for i in range(len(testData)):
for j in range(len(testData[i])):
testLabelNum.append(i)
imageGray = testData[i][j]
io.imsave("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage\\"+str(i)+"_"+str(j)+".jpg",imageGray)
np.save("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testLabelNum",testLabelNum)
print("图片处理完了")

import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import color,data,transform,io

trainDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage")
trainDataList = []
for i in range(len(trainDataDirList)):
image = io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainGrayImage\\"+trainDataDirList[i])
trainDataList.append(image)
trainLabelNum = np.load("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\trainLabelNum.npy")

testDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage")
testDataList = []
for i in range(len(testDataDirList)):
image = io.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testGrayImage\\"+testDataDirList[i])
testDataList.append(image)
testLabelNum = np.load("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\testLabelNum.npy")

import tensorflow as tf
from random import shuffle

INPUT_NODE = 64*64
OUT_NODE = 77
IMAGE_SIZE = 64
NUM_CHANNELS = 1
NUM_LABELS = 77
#第一层卷积层的尺寸和深度
CONV1_DEEP = 64
CONV1_SIZE = 5
#第二层卷积层的尺寸和深度
CONV2_DEEP = 128
CONV2_SIZE = 5
#全连接层的节点数
FC_SIZE = 1024

def inference(input_tensor, train, regularizer):
#卷积
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.Variable(tf.random_normal([CONV1_SIZE,CONV1_SIZE,NUM_CHANNELS,CONV1_DEEP],stddev=0.1),name='weight')
conv1_biases = tf.Variable(tf.Variable(tf.random_normal([CONV1_DEEP])),name="bias")
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
#池化
with tf.variable_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#卷积
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.Variable(tf.random_normal([CONV2_SIZE,CONV2_SIZE,CONV1_DEEP,CONV2_DEEP],stddev=0.1),name='weight')
conv2_biases = tf.Variable(tf.random_normal([CONV2_DEEP]),name="bias")
#卷积向前学习
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
#池化
with tf.variable_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#卷积
with tf.variable_scope('layer5-conv3'):
conv3_weights = tf.Variable(tf.random_normal([5,5,CONV2_DEEP,512],stddev=0.1),name='weight')
conv3_biases = tf.Variable(tf.random_normal([512]),name="bias")
#卷积向前学习
conv3 = tf.nn.conv2d(pool2,conv3_weights,strides=[1,1,1,1],padding='SAME')
relu3 = tf.nn.relu(tf.nn.bias_add(conv3,conv3_biases))
#池化
with tf.variable_scope('layer6-pool3'):
pool3 = tf.nn.max_pool(relu3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#卷积
with tf.variable_scope('layer7-conv4'):
conv4_weights = tf.Variable(tf.random_normal([5,5,512,64],stddev=0.1),name='weight')
conv4_biases = tf.Variable(tf.random_normal([64]),name="bias")
#卷积向前学习
conv4 = tf.nn.conv2d(pool3,conv4_weights,strides=[1,1,1,1],padding='SAME')
relu4 = tf.nn.relu(tf.nn.bias_add(conv4,conv4_biases))
#池化
with tf.variable_scope('layer7-pool4'):
pool4 = tf.nn.max_pool(relu3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#变型
pool_shape = pool4.get_shape().as_list()
#计算最后一次池化后对象的体积(数据个数\节点数\像素个数)
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
#根据上面的nodes再次把最后池化的结果pool2变为batch行nodes列的数据
reshaped = tf.reshape(pool4,[-1,nodes])

#全连接层
with tf.variable_scope('layer8-fc1'):
fc1_weights = tf.Variable(tf.random_normal([nodes,FC_SIZE],stddev=0.1),name='weight')
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc1_weights))
fc1_biases = tf.Variable(tf.random_normal([FC_SIZE]),name="bias")
#预测
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
if(train):
fc1 = tf.nn.dropout(fc1,0.5)
#全连接层
with tf.variable_scope('layer9-fc2'):
fc2_weights = tf.Variable(tf.random_normal([FC_SIZE,64],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc2_weights))
fc2_biases = tf.Variable(tf.random_normal([64]),name="bias")
#预测
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights)+fc2_biases)
if(train):
fc2 = tf.nn.dropout(fc2,0.5)
#全连接层
with tf.variable_scope('layer10-fc3'):
fc3_weights = tf.Variable(tf.random_normal([64,NUM_LABELS],stddev=0.1),name="weight")
if(regularizer != None):
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(0.03)(fc3_weights))
fc3_biases = tf.Variable(tf.random_normal([NUM_LABELS]),name="bias")
#预测
logit = tf.matmul(fc2,fc3_weights)+fc3_biases
return logit

import keras
import time
from keras.utils import np_utils

X = np.vstack(trainDataList).reshape(-1, 64,64,1)
Y = np.vstack(trainLabelNum).reshape(-1, 1)
Xrandom = []
Yrandom = []
index = [i for i in range(len(X))]
shuffle(index)
for i in range(len(index)):
Xrandom.append(X[index[i]])
Yrandom.append(Y[index[i]])
np.save("E:\\Xrandom",Xrandom)
np.save("E:\\Xrandom",Yrandom)

X = Xrandom
Y = Yrandom
Y=keras.utils.to_categorical(Y,OUT_NODE)

batch_size = 200
n_classes=77
epochs=20#循环次数
learning_rate=1e-4
batch_num=int(np.shape(X)[0]/batch_size)
dropout=0.75

x=tf.placeholder(tf.float32,[None,64,64,1])
y=tf.placeholder(tf.float32,[None,n_classes])
# keep_prob = tf.placeholder(tf.float32)

pred=inference(x,1,"regularizer")

cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))

# 三种优化方法选择一个就可以
optimizer=tf.train.AdamOptimizer(1e-4).minimize(cost)
# train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cost)
# train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(cost)
keep_prob = tf.placeholder(dtype=tf.float32, name="keep_prob")
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
# merged = tf.summary.merge_all()
init=tf.global_variables_initializer()
start_time = time.time()

with tf.Session() as sess:
sess.run(init)
# writer = tf.summary.FileWriter('./fruit', sess.graph)
for i in range(epochs):
for j in range(batch_num):
start = (j*batch_size)
end = start+batch_size
sess.run(optimizer, feed_dict={x:X[start:end],y:Y[start:end],keep_prob: 0.5})
loss,acc = sess.run([cost,accuracy],feed_dict={x:X[start:end],y:Y[start:end],keep_prob: 1})
# result = sess.run(merged, feed_dict={x:X[start:end],y:Y[start:end]})
# writer.add_summary(result, i)
if epochs % 1 == 0:
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc*100))

end_time = time.time()
print('运行时间:',(end_time-start_time))
print('Optimization Completed')

def gen_small_data(inputs,batch_size):
i=0
j = True
while j:
small_data=inputs[i:(batch_size+i)]
i+=batch_size
if len(small_data)!=0:
yield small_data
if len(small_data)==0:
j=False

with tf.Session() as sess:
sess.run(init)
# writer = tf.summary.FileWriter('./fruit', sess.graph)
for i in range(epochs):
x_=gen_small_data(X,batch_size)
y_=gen_small_data(Y,batch_size)
X = next(x_)
Y = next(y_)
sess.run(optimizer, feed_dict={x:X,y:Y})
loss,acc = sess.run([cost,accuracy],feed_dict={x:X,y:Y})
# result = sess.run(merged, feed_dict={x:X[start:end],y:Y[start:end]})
# writer.add_summary(result, i)
if epochs % 1 == 0:
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc))

labelNameList = []
for i in range(len(labelList)):
labelNameList.append("label:"+labelList[i])
theFireImage = []
for i in range(len(allsortImageName)):
theFireImage.append(plt.imread("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training\\"+labelList[i]+"\\" + allsortImageName[i][4]))
gs = plt.GridSpec(11,7)
fig = plt.figure(figsize=(10,10))
imageIndex = 0
ax = plt.gca()
for i in range(11):
for j in range(7):
fi = fig.add_subplot(gs[i,j])
fi.imshow(theFireImage[imageIndex])
plt.xticks(())
plt.yticks(())
plt.axis('off')
plt.title(labelNameList[imageIndex],fontsize=7)
ax.set_xticks([])
ax.set_yticks([])
ax.spines['top'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_color('none')
imageIndex += 1
plt.show()

吴裕雄 python神经网络 水果图片识别(1)的更多相关文章

  1. 吴裕雄 python神经网络 水果图片识别(5)

    #-*- coding:utf-8 -*-### required libaraiedimport osimport matplotlib.image as imgimport matplotlib. ...

  2. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  3. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  4. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  5. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  7. 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow图片预处理

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读 ...

随机推荐

  1. VS起始页不显示最近使用的项目解决方案

    前段时间换了一家公司,做ASP.NET开发,让我郁闷的是VS的起始页总是不显示最近使用项目,起先没在意,后来觉得越来越不方便了,然后本着内事不决问百度,外事不决问谷歌的态度,我就百了下~,结果还真遇到 ...

  2. 详细说明 配置 Sublime Text 开发node.js(windows)包括sub2和sub3的区别

    1.先安装Sublime Text  2或者3皆可 2.下载 sublime Text 的nodejs插件 得到那个zip包(后面会介绍用Package Control安装) 3.下载后解压 直接改名 ...

  3. oracle 恢复备份

    select * from dbconninfo update dbconninfo set url = 'jdbc:oracle:thin:@(description=(address_list=( ...

  4. C#操作VFP的dbf数据库文件实例

    C#操作VFP的dbf数据库文件实例 新一篇: js获取网站跟路径 实例中分别使用Oledb和Odbc操作vfp数据库dbf文件,操作包括:读取,增删改. 已测试可直接使用,使用方法:下面代码分两个部 ...

  5. spring eureka required a bean of type 'com.netflix.discovery.DiscoveryClient' that could not be found.

    spring在集成第三方过程很容易出现类名相同,且基本作用相同的类.这样给初学者带来一定的困惑. 导致用错类而出现以下问题. required a bean of type 'com.netflix. ...

  6. bzoj 3978: [WF2012]Fibonacci Words

    Description 斐波那契01字符串的定义如下 F(n) = { 0  if n = 0 1  if n = 1 F(n-1)+F(n-2) if n >= 2 } 这里+的定义是字符串的 ...

  7. 求两点之间距离 C++

    求两点之间距离(20 分) 定义一个Point类,有两个数据成员:x和y, 分别代表x坐标和y坐标,并有若干成员函数. 定义一个函数Distance(), 用于求两点之间的距离.输入格式: 输入有两行 ...

  8. 关于UC、火狐、谷歌浏览器屏蔽布局中广告的解决办法

     关于UC浏览器屏蔽了广西人才网的名企.品牌.热点的logo,是因为当成广告过滤掉了,以后div的class和id不能以“ad”开头.这可能只是其中一个规则,adxxxx是可以的,不能是adXxxx, ...

  9. 1067 Sort with Swap(0, i) (25 分)

    1067 Sort with Swap(0, i) (25 分) Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy ...

  10. 初步认识AutoMapper

      AutoMapper 初步认识AutoMapper 前言 手动映射 使用AutoMapper 创建映射 Conventions 映射到一个已存在的实例对象   前言 通常在一个应用程序中,我们开发 ...