吴裕雄 python 机器学习-KNN算法(1)
import numpy as np
import operator as op
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createDataSet():
group = np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels data,labels = createDataSet()
print(data)
print(labels) test = np.array([[0,0.5]])
result = classify0(test,data,labels,3)
print(result)
import numpy as np
import operator as op
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def file2matrix(filename):
fr = open(filename)
returnMat = []
classLabelVector = [] #prepare labels return
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat.append([float(listFromLine[0]),float(listFromLine[1]),float(listFromLine[2])])
classLabelVector.append(int(listFromLine[-1]))
return np.array(returnMat),np.array(classLabelVector) trainData,trainLabel = file2matrix("D:\\LearningResource\\machinelearninginaction\\Ch02\\datingTestSet2.txt")
print(trainData[0:4])
print(trainLabel[0:4]) def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = np.zeros(np.shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - np.tile(minVals, (m,1))
normDataSet = normDataSet/np.tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals normDataSet, ranges, minVals = autoNorm(trainData)
print(ranges)
print(minVals)
print(normDataSet[0:4])
print(trainLabel[0:4]) testData = np.array([[0.5,0.3,0.5]])
result = classify0(testData, normDataSet, trainLabel, 5)
print(result)
import numpy as np
import operator as op
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def file2matrix(filename):
fr = open(filename)
returnMat = []
classLabelVector = [] #prepare labels return
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat.append([float(listFromLine[0]),float(listFromLine[1]),float(listFromLine[2])])
classLabelVector.append(listFromLine[-1])
return np.array(returnMat),np.array(classLabelVector) def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = np.zeros(np.shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - np.tile(minVals, (m,1))
normDataSet = normDataSet/np.tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals normDataSet, ranges, minVals = autoNorm(trainData) def datingClassTest():
hoRatio = 0.10 #hold out 10%
datingDataMat,datingLabels = file2matrix("D:\\LearningResource\\machinelearninginaction\\Ch02\\datingTestSet.txt")
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print(('the classifier came back with: %s, the real answer is: %s') % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print(('the total error rate is: %f') % (errorCount/float(numTestVecs)))
print(errorCount) datingClassTest()
import numpy as np
import operator as op
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def file2matrix(filename):
fr = open(filename)
returnMat = []
classLabelVector = [] #prepare labels return
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat.append([float(listFromLine[0]),float(listFromLine[1]),float(listFromLine[2])])
classLabelVector.append(listFromLine[-1])
return np.array(returnMat),np.array(classLabelVector) def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = np.zeros(np.shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - np.tile(minVals, (m,1))
normDataSet = normDataSet/np.tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals normDataSet, ranges, minVals = autoNorm(trainData) def datingClassTest():
hoRatio = 0.10 #hold out 10%
datingDataMat,datingLabels = file2matrix("D:\\LearningResource\\machinelearninginaction\\Ch02\\datingTestSet.txt")
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print(('the classifier came back with: %s, the real answer is: %s') % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print(('the total error rate is: %f') % (errorCount/float(numTestVecs)))
print(errorCount) datingClassTest()
................................................
import numpy as np
import operator as op
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def file2matrix(filename):
fr = open(filename)
returnMat = []
classLabelVector = [] #prepare labels return
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat.append([float(listFromLine[0]),float(listFromLine[1]),float(listFromLine[2])])
classLabelVector.append(int(listFromLine[-1]))
return np.array(returnMat),np.array(classLabelVector) def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = np.zeros(np.shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - np.tile(minVals, (m,1))
normDataSet = normDataSet/np.tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals def classifyPerson():
resultList = ["not at all", "in samll doses", "in large doses"]
percentTats = float(input("percentage of time spent playing video game?"))
ffMiles = float(input("frequent flier miles earned per year?"))
iceCream = float(input("liters of ice cream consumed per year?"))
testData = np.array([percentTats,ffMiles,iceCream])
trainData,trainLabel = file2matrix("D:\\LearningResource\\machinelearninginaction\\Ch02\\datingTestSet2.txt")
normDataSet, ranges, minVals = autoNorm(trainData)
result = classify0((testData-minVals)/ranges, normDataSet, trainLabel, 3)
print("You will probably like this person: ",resultList[result-1]) classifyPerson()
import numpy as np
import operator as op
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def file2matrix(filename):
fr = open(filename)
returnMat = []
classLabelVector = [] #prepare labels return
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat.append([float(listFromLine[0]),float(listFromLine[1]),float(listFromLine[2])])
classLabelVector.append(int(listFromLine[-1]))
return np.array(returnMat),np.array(classLabelVector) def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = np.zeros(np.shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - np.tile(minVals, (m,1))
normDataSet = normDataSet/np.tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals def classifyPerson():
resultList = ["not at all", "in samll doses", "in large doses"]
percentTats = float(input("percentage of time spent playing video game?"))
ffMiles = float(input("frequent flier miles earned per year?"))
iceCream = float(input("liters of ice cream consumed per year?"))
testData = np.array([percentTats,ffMiles,iceCream])
trainData,trainLabel = file2matrix("D:\\LearningResource\\machinelearninginaction\\Ch02\\datingTestSet2.txt")
normDataSet, ranges, minVals = autoNorm(trainData)
result = classify0((testData-minVals)/ranges, normDataSet, trainLabel, 3)
print("You will probably like this person: ",resultList[result-1]) classifyPerson()
import numpy as np
import operator as op
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def img2vector(filename):
returnVect = []
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect.append(int(lineStr[j]))
return np.array([returnVect]) def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('D:\\LearningResource\\machinelearninginaction\\Ch02\\trainingDigits') #load the training set
m = len(trainingFileList)
trainingMat = np.zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('D:\\LearningResource\\machinelearninginaction\\Ch02\\trainingDigits\\%s' % fileNameStr)
testFileList = listdir('D:\\LearningResource\\machinelearninginaction\\Ch02\\testDigits') #iterate through the test set
mTest = len(testFileList)
errorCount = 0.0
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('D:\\LearningResource\\machinelearninginaction\\Ch02\\testDigits\\%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
if (classifierResult != classNumStr):
errorCount += 1.0
print("\nthe total number of errors is: %d" % errorCount)
print("\nthe total error rate is: %f" % (errorCount/float(mTest))) handwritingClassTest()
.......................................
吴裕雄 python 机器学习-KNN算法(1)的更多相关文章
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习-KNN(2)
import matplotlib import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import ...
- 吴裕雄 python 机器学习——半监督学习标准迭代式标记传播算法LabelPropagation模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用
import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...
- 吴裕雄 python 机器学习——半监督学习LabelSpreading模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
随机推荐
- 过滤器Filter的四种拦截方式
过滤器有四种拦截方式!分别是:REQUEST.FORWARD.INCLUDE.ERROR. REQUEST: 直接访问目标资源时执行过滤器.包括:在地址栏中直接访问.表单提交.超链接.重定向,只要在地 ...
- GitHub万星的ML算法面试大全
项目地址:https://github.com/imhuay/Algorithm_Interview_Notes-Chinese 如下所示为整个项目的结构,其中从机器学习到数学主要提供的是笔记与面试知 ...
- 让MySql支持表情符号(MySQL中4字节utf8字符保存方法)
UTF-8编码有可能是两个.三个.四个字节.Emoji表情是4个字节,而MySQL的utf8编码最多3个字节,所以数据插不进去. 解决方案:将编码从utf8转换成utf8mb4. 1. 修改my.in ...
- oracle常用加解密函数
md5 CREATE OR REPLACE FUNCTION MD5( passwd IN VARCHAR2) RETURN VARCHAR2 IS retval varchar2(32); BEGI ...
- Guava实现 过滤文本,排序,转换内容,分组计数转换map 等等
重要点 :看注释 从access.log中统计数据 对healthcheck.html的请求不计入统计 输出请求总量,以及GET和POST分别的总量 输出请求最频繁的10个接口及其次数,按次数降序 输 ...
- 性能测试day01_性能基本概念
其实第一次接触性能是15年的时候,懵懵懂懂的被领导拉去做第一次做性能压测,如今有机会重新听一下云层大大讲解性能,于是打算以此博客记录下整个学习的过程,如若有不同意见者可以在下面留言指出,也欢迎大家一起 ...
- 数据库设计和ER模型-------之ER模型的基本概念(第二章)
ER模型(实体联系模型)的基本元素 实体:是一个数据对象,在ER模型中,实体用方框表示,方框内注明实体的名称 联系:表示一个或多个实体之间的关联关系,联系用菱形框表示,并用线段将其与相关的实体联系起来 ...
- [Unity工具]CSV工具类
参考链接: https://www.cnblogs.com/lulianqi/p/6385503.html http://blog.csdn.net/paul342/article/details/2 ...
- EXCEL workbook.saveas 函数详解
本问所有资料来自于 Excel2003 VBA帮助文件,张荣整理,适用于DELPHI,VB的高级语言操作Excel用 ExcelApplication.WorkBook.SaveAs(filename ...
- zookeeper(1)初识zookeeper
一.zookeeper的安装 1.下载zookeeper(当然在安装zookeeper之前得先装好jdk,这里就不说了),版本自己随便选一个(后面我再说版本的问题),点击这里下载. 2.然后在usr下 ...