吴裕雄--天生自然 python数据分析:健康指标聚集分析(健康分析)
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory
df=pd.read_csv('F:\\kaggleDataSet\\Key_indicator_districtwise\\Key_indicator_districtwise.csv')
df.head()
x=df['AA_Sample_Units_Total']
y=df['AA_Sample_Units_Rural']
z=df['AA_Population_Urban']
import matplotlib.pyplot as plt
import seaborn as sns
plt.title('State_District_Name vs AA_Sample_Units_Total ')
plt.xlabel('State_District_Name')
plt.ylabel('AA_Sample_Units_Total')
plt.scatter(x,y)
plt.hist(x)
plt.title('AA_Sample_Units_Total vs Frequency')
plt.xlabel('AA_Sample_Units_Total')
plt.ylabel('Frequency')
plt.hist(y)
plt.title('AA_Sample_Units_Rural vs frequency')
plt.xlabel('AA_Sample_Units_Rural')
plt.ylabel('Frequency')
plt.hist(z)
plt.title('AA_Population_Urban vs Frequency')
plt.xlabel('AA_Population_Urban')
plt.ylabel('Frequency')
q=df['AA_Ever_Married_Women_Aged_15_49_Years_Total']
q
w=q.sort_values()
w
plt.boxplot(w)
plt.boxplot(y)
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model, metrics # load the boston dataset
boston = datasets.load_boston(return_X_y=False) # defining feature matrix(X) and response vector(y)
X = boston.data
y = boston.target # splitting X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,
random_state=1) # create linear regression object
reg = linear_model.LinearRegression() # train the model using the training sets
reg.fit(X_train, y_train) # regression coefficients
print('Coefficients: \n', reg.coef_) # variance score: 1 means perfect prediction
print('Variance score: {}'.format(reg.score(X_test, y_test))) # plot for residual error ## setting plot style
plt.style.use('fivethirtyeight') ## plotting residual errors in training data
plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train,
color = "green", s = 10, label = 'Train data') ## plotting residual errors in test data
plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test,
color = "blue", s = 10, label = 'Test data') ## plotting line for zero residual error
plt.hlines(y = 0, xmin = 0, xmax = 50, linewidth = 2) ## plotting legend
plt.legend(loc = 'upper right') ## plot title
plt.title("Residual errors") ## function to show plot
plt.show()
吴裕雄--天生自然 python数据分析:健康指标聚集分析(健康分析)的更多相关文章
- 吴裕雄--天生自然 PYTHON数据分析:基于Keras的CNN分析太空深处寻找系外行星数据
#We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import ...
- 吴裕雄--天生自然 PYTHON数据分析:人类发展报告——HDI, GDI,健康,全球人口数据数据分析
import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data v ...
- 吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...
- 吴裕雄--天生自然 PYTHON数据分析:所有美国股票和etf的历史日价格和成交量分析
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...
- 吴裕雄--天生自然 python数据分析:葡萄酒分析
# import pandas import pandas as pd # creating a DataFrame pd.DataFrame({'Yes': [50, 31], 'No': [101 ...
- 吴裕雄--天生自然 python数据分析:医疗费数据分析
import numpy as np import pandas as pd import os import matplotlib.pyplot as pl import seaborn as sn ...
- 吴裕雄--天生自然 python数据分析:基于Keras使用CNN神经网络处理手写数据集
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mp ...
- 吴裕雄--天生自然 PYTHON数据分析:钦奈水资源管理分析
df = pd.read_csv("F:\\kaggleDataSet\\chennai-water\\chennai_reservoir_levels.csv") df[&quo ...
- 吴裕雄--天生自然 PYTHON数据分析:医疗数据分析
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.rea ...
随机推荐
- python中的变量对象小结2
# .变量名和数据内容是分开存储的. # .数据保存在内存中的一个位置(地址). # .变量中保存着数据在内存中的地址. # 引用就是变量中记录数据的地址. #不可变变量,重新赋值时会重新开辟一个地址 ...
- ESLint javascript格式要求
首行缩进2个空格 eslint: indent functionhello (name) { console.log('hi', name) } 字符串使用单引号(除了避免转义) eslint: qu ...
- ios键盘退出
点击空白处退出键盘 -(void)touchesBegan:(nonnull NSSet<UITouch *> *)touches withEvent:(nullable UIEvent ...
- layui子弹框调用父弹框方法
var thisFrame = parent.window.document.getElementById("LAY_layuiStampDuty1").getElementsBy ...
- axios 模拟同步请求
axios本身没有同步请求,但是我们很多情况下必须得需要同步请求.那么应该怎么做? 上网查了一些资料有人说用es6的 async + assert 我不知道有没有效果,因为我的功能中是没啥效果的. ...
- pip 通过pqi切换源到国内镜像
pip install pqipqi lspqi use aliyun # pqi use tuna 清华
- 003.前端开发知识,前端基础CSS(2020-01-07)
一.CSS初识 CSS通常称为CSS样式表或层叠样式表(级联样式表),主要用于设置HTML页面中的文本内容(字体.大小.对齐方式等).图片的外形(宽高.边框样式.边距等)以及版面的布局等外观显示样式. ...
- 对数据集进行最优分箱和WOE转换
对数据集分箱的方式三种,等宽等频最优,下面介绍对数据集进行最优分箱,分箱的其他介绍可以查看其他的博文,具体在这就不细说了: 大体步骤: 加载数据: 遍历所有的feature, 分别处理离散和连续特征: ...
- auth模块用法
Auth模块: 如果你想用auth模块 那么你就用全套 createsuperuser 创建超级用户 这个超级用户就可以拥有登陆django admin后台管理的权限 Auth模块是Django ...
- iOS动画效果合集、飞吧企鹅游戏、换肤方案、画板、文字效果等源码
iOS精选源码 动画知识运用及常见动画效果收集 3D卡片拖拽卡片叠加卡片 iFIERO - FLYING PENGUIN 飞吧企鹅SpriteKit游戏(源码) Swift封装的空数据提醒界面Empt ...