吴裕雄--天生自然 PYTHON数据分析:所有美国股票和etf的历史日价格和成交量分析

# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in import matplotlib.pyplot as plt
import statsmodels.tsa.seasonal as smt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import random
import datetime as dt
from sklearn import linear_model
from sklearn.metrics import mean_absolute_error
import plotly # import the relevant Keras modules
from keras.models import Sequential
from keras.layers import Activation, Dense
from keras.layers import LSTM
from keras.layers import Dropout # Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory from subprocess import check_output
import os
os.chdir('F:\\kaggleDataSet\\price-volume\\Stocks')
#read data
# kernels let us navigate through the zipfile as if it were a directory # trying to read a file of size zero will throw an error, so skip them
# filenames = [x for x in os.listdir() if x.endswith('.txt') and os.path.getsize(x) > 0]
# filenames = random.sample(filenames,1)
filenames = ['prk.us.txt', 'bgr.us.txt', 'jci.us.txt', 'aa.us.txt', 'fr.us.txt', 'star.us.txt', 'sons.us.txt', 'ipl_d.us.txt', 'sna.us.txt', 'utg.us.txt']
filenames = [filenames[1]]
print(filenames)
data = []
for filename in filenames:
df = pd.read_csv(filename, sep=',')
label, _, _ = filename.split(sep='.')
df['Label'] = filename
df['Date'] = pd.to_datetime(df['Date'])
data.append(df)

traces = []
for df in data:
clr = str(r()) + str(r()) + str(r())
df = df.sort_values('Date')
label = df['Label'].iloc[0]
trace = plotly.graph_objs.Scattergl(x=df['Date'],y=df['Close'])
traces.append(trace) layout = plotly.graph_objs.Layout(title='Plot',)
fig = plotly.graph_objs.Figure(data=traces, layout=layout)
plotly.offline.init_notebook_mode(connected=True)
plotly.offline.iplot(fig, filename='dataplot')

df = data[0]
window_len = 10 #Create a data point (i.e. a date) which splits the training and testing set
split_date = list(data[0]["Date"][-(2*window_len+1):])[0] #Split the training and test set
training_set, test_set = df[df['Date'] < split_date], df[df['Date'] >= split_date]
training_set = training_set.drop(['Date','Label', 'OpenInt'], 1)
test_set = test_set.drop(['Date','Label','OpenInt'], 1) #Create windows for training
LSTM_training_inputs = []
for i in range(len(training_set)-window_len):
temp_set = training_set[i:(i+window_len)].copy() for col in list(temp_set):
temp_set[col] = temp_set[col]/temp_set[col].iloc[0] - 1
LSTM_training_inputs.append(temp_set)
LSTM_training_outputs = (training_set['Close'][window_len:].values/training_set['Close'][:-window_len].values)-1 LSTM_training_inputs = [np.array(LSTM_training_input) for LSTM_training_input in LSTM_training_inputs]
LSTM_training_inputs = np.array(LSTM_training_inputs) #Create windows for testing
LSTM_test_inputs = []
for i in range(len(test_set)-window_len):
temp_set = test_set[i:(i+window_len)].copy() for col in list(temp_set):
temp_set[col] = temp_set[col]/temp_set[col].iloc[0] - 1
LSTM_test_inputs.append(temp_set)
LSTM_test_outputs = (test_set['Close'][window_len:].values/test_set['Close'][:-window_len].values)-1 LSTM_test_inputs = [np.array(LSTM_test_inputs) for LSTM_test_inputs in LSTM_test_inputs]
LSTM_test_inputs = np.array(LSTM_test_inputs)
def build_model(inputs, output_size, neurons, activ_func="linear",dropout=0.10, loss="mae", optimizer="adam"):
model = Sequential()
model.add(LSTM(neurons, input_shape=(inputs.shape[1], inputs.shape[2])))
model.add(Dropout(dropout))
model.add(Dense(units=output_size))
model.add(Activation(activ_func))
model.compile(loss=loss, optimizer=optimizer)
return model
# initialise model architecture
nn_model = build_model(LSTM_training_inputs, output_size=1, neurons = 32)
# model output is next price normalised to 10th previous closing price
# train model on data
# note: eth_history contains information on the training error per epoch
nn_history = nn_model.fit(LSTM_training_inputs, LSTM_training_outputs, epochs=5, batch_size=1, verbose=2, shuffle=True)

plt.plot(LSTM_test_outputs, label = "actual")
plt.plot(nn_model.predict(LSTM_test_inputs), label = "predicted")
plt.legend()
plt.show()
MAE = mean_absolute_error(LSTM_test_outputs, nn_model.predict(LSTM_test_inputs))
print('The Mean Absolute Error is: {}'.format(MAE))

#https://github.com/llSourcell/How-to-Predict-Stock-Prices-Easily-Demo/blob/master/lstm.py
def predict_sequence_full(model, data, window_size):
#Shift the window by 1 new prediction each time, re-run predictions on new window
curr_frame = data[0]
predicted = []
for i in range(len(data)):
predicted.append(model.predict(curr_frame[np.newaxis,:,:])[0,0])
curr_frame = curr_frame[1:]
curr_frame = np.insert(curr_frame, [window_size-1], predicted[-1], axis=0)
return predicted predictions = predict_sequence_full(nn_model, LSTM_test_inputs, 10) plt.plot(LSTM_test_outputs, label="actual")
plt.plot(predictions, label="predicted")
plt.legend()
plt.show()
MAE = mean_absolute_error(LSTM_test_outputs, predictions)
print('The Mean Absolute Error is: {}'.format(MAE))

结论
LSTM不能解决时间序列预测问题。对一个时间步长的预测并不比滞后模型好多少。如果我们增加预测的时间步长,性能下降的速度就不会像其他更传统的方法那么快。然而,在这种情况下,我们的误差增加了大约4.5倍。它随着我们试图预测的时间步长呈超线性增长。
吴裕雄--天生自然 PYTHON数据分析:所有美国股票和etf的历史日价格和成交量分析的更多相关文章
- 吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...
- 吴裕雄--天生自然 python数据分析:健康指标聚集分析(健康分析)
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...
- 吴裕雄--天生自然 python数据分析:葡萄酒分析
# import pandas import pandas as pd # creating a DataFrame pd.DataFrame({'Yes': [50, 31], 'No': [101 ...
- 吴裕雄--天生自然 PYTHON数据分析:人类发展报告——HDI, GDI,健康,全球人口数据数据分析
import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data v ...
- 吴裕雄--天生自然 python数据分析:医疗费数据分析
import numpy as np import pandas as pd import os import matplotlib.pyplot as pl import seaborn as sn ...
- 吴裕雄--天生自然 PYTHON数据分析:基于Keras的CNN分析太空深处寻找系外行星数据
#We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import ...
- 吴裕雄--天生自然 python数据分析:基于Keras使用CNN神经网络处理手写数据集
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mp ...
- 吴裕雄--天生自然 PYTHON数据分析:钦奈水资源管理分析
df = pd.read_csv("F:\\kaggleDataSet\\chennai-water\\chennai_reservoir_levels.csv") df[&quo ...
- 吴裕雄--天生自然 PYTHON数据分析:医疗数据分析
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.rea ...
随机推荐
- cd命令和roscd命令的区别,并解决环境变量问题
cd命令和roscd命令都是切换到指定目录的命令.不同的是,cd是Linux系统的命令,在使用时必须指定目标目录的完整路径:而roscd是ros系统中的命令,它可以直接切换到指定目录(ros系统中的软 ...
- Cheat Sheet pyspark RDD(PySpark 速查表)
- POJ_1006_中国剩余
http://poj.org/problem?id=1006 中国剩余定理用来解求模方程组,用到了逆元. 这题三个数互质,直接用扩展欧几里德可得逆元. #include<iostream> ...
- 牛客练习赛34 D little w and Exchange(归纳)
题意: 给n个数,和m 问这组数是否可以构成[1, m]中的每一个数 思路: 先将a数组排序. 先算算构成前几个数需要什么,至少需要a[1]=1 需要a[2] = 1,2 在a[2] = 1的情况下a ...
- Android Studio 学习笔记(三):简单控件及实例
控件.组件.插件概念区分 说到控件,就不得不区分一些概念. 控件(Control):编程中用到的部件 组件(Component):软件的组成部分 插件(plugin): 应用程序中已经预留接口的组件 ...
- ELK:日志收集分析平台
简介 ELK是一个日志收集分析的平台,它能收集海量的日志,并将其根据字段切割.一来方便供开发查看日志,定位问题:二来可以根据日志进行统计分析,通过其强大的呈现能力,挖掘数据的潜在价值,分析重要指标的趋 ...
- 怎么用wait、notify巧妙的设计一个Future模式?
我们知道多线程可以实现同时执行多个任务(只是看起来是同时,其实是CPU的时间片切换特别快我们没感觉而已). 现在假设一个做饭的场景,你没有厨具也没有食材.你可以去网上买一个厨具,但是这段时间,你不需要 ...
- WinRAR目录穿越
WinRAR目录穿越漏洞浅析及复现(CVE-2018-20250) 文章来源: https://www.t00ls.net/articles-50276.html EXP: https://githu ...
- centos输入正确密码后依旧无法登陆问题
输入正确用户名和密码时依旧无法登录. 进入单用户模式重置密码: 开机启动时,按‘E’键(倒计时结束前)进入界面 选择第二项,按‘E’键再次进入 在最后一行添加‘ 1’(空格 1) 回车键保存,回到该界 ...
- python爬虫实战:基础爬虫(使用BeautifulSoup4等)
以前学习写爬虫程序时候,我没有系统地学习爬虫最基本的模块框架,只是实现自己的目标而写出来的,最近学习基础的爬虫,但含有完整的结构,大型爬虫含有的基础模块,此项目也有,“麻雀虽小,五脏俱全”,只是没有考 ...