吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import cluster
from sklearn.metrics import adjusted_rand_score
from sklearn.datasets.samples_generator import make_blobs def create_data(centers,num=100,std=0.7):
X, labels_true = make_blobs(n_samples=num, centers=centers, cluster_std=std)
return X,labels_true #层次聚类AgglomerativeClustering模型
def test_AgglomerativeClustering(*data):
'''
测试 AgglomerativeClustering 的用法
'''
X,labels_true=data
clst=cluster.AgglomerativeClustering()
predicted_labels=clst.fit_predict(X)
print("ARI:%s"% adjusted_rand_score(labels_true,predicted_labels)) # 用于产生聚类的中心点
centers=[[1,1],[2,2],[1,2],[10,20]]
# 产生用于聚类的数据集
X,labels_true=create_data(centers,1000,0.5)
# 调用 test_AgglomerativeClustering 函数
test_AgglomerativeClustering(X,labels_true)

def test_AgglomerativeClustering_nclusters(*data):
'''
测试 AgglomerativeClustering 的聚类结果随 n_clusters 参数的影响
'''
X,labels_true=data
nums=range(1,50)
ARIs=[]
for num in nums:
clst=cluster.AgglomerativeClustering(n_clusters=num)
predicted_labels=clst.fit_predict(X)
ARIs.append(adjusted_rand_score(labels_true,predicted_labels))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(nums,ARIs,marker="+")
ax.set_xlabel("n_clusters")
ax.set_ylabel("ARI")
fig.suptitle("AgglomerativeClustering")
plt.show() # 调用 test_AgglomerativeClustering_nclusters 函数
test_AgglomerativeClustering_nclusters(X,labels_true)

def test_AgglomerativeClustering_linkage(*data):
'''
测试 AgglomerativeClustering 的聚类结果随链接方式的影响
'''
X,labels_true=data
nums=range(1,50)
fig=plt.figure()
ax=fig.add_subplot(1,1,1) linkages=['ward','complete','average']
markers="+o*"
for i, linkage in enumerate(linkages):
ARIs=[]
for num in nums:
clst=cluster.AgglomerativeClustering(n_clusters=num,linkage=linkage)
predicted_labels=clst.fit_predict(X)
ARIs.append(adjusted_rand_score(labels_true,predicted_labels))
ax.plot(nums,ARIs,marker=markers[i],label="linkage:%s"%linkage) ax.set_xlabel("n_clusters")
ax.set_ylabel("ARI")
ax.legend(loc="best")
fig.suptitle("AgglomerativeClustering")
plt.show() # 调用 test_AgglomerativeClustering_linkage 函数
test_AgglomerativeClustering_linkage(X,labels_true)

吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型的更多相关文章
- 吴裕雄 python 机器学习——密度聚类DBSCAN模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——KNN分类KNeighborsClassifier模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——半监督学习LabelSpreading模型
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import d ...
- 吴裕雄 python 机器学习——支持向量机线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——混合高斯聚类GMM模型
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics ...
- 吴裕雄 python 机器学习——K均值聚类KMeans模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
随机推荐
- [改错_19/04/01] 学习Java.IO 对象数据流时出现 Exception in thread "main" java.io.EOFException ...at cn.sxt.test.Test_DataStream.main(Test_DataStream.java:31) 错误 .
过程描述:编译可以通过,就是每次运行时出现如下的图片,百思不得其解. 错误原因: byte[] datas=baos.toByteArray(); 放在了oos.writeInt(14);oos.fl ...
- js获取给定时间的下一天
//获取给定时间的下一天 yyyy-MM-dd格式 function getNextDay(d){ d = new Date(d); d = +d + 1000*60*60*24; d = new D ...
- 简单使用Spring Boot+JpaRepository+hibernate搭建项目
sql: -- -------------------------------------------------------- -- 主机: 127.0.0.1 -- 服务器版本: 10.3.9-M ...
- linux c 获取当前时间 毫秒级的 unix网络编程
#include <time.h> #inlcude <sys/time.h> char *gf_time(void) /* get the time */{ struct t ...
- Gradle Goodness: Adding Tasks to a Predefined Group
In Gradle we can group related tasks using the group property of a task. We provide the name of our ...
- Gradle Goodness: Unpacking an Archive
To create an archive with Gradle is easy. We have several tasks like Zip, Tar, Jar, War and Ear to c ...
- swift实现一个对象池
1.创建一个对象池 对象池:对象池一般用来管理一组可重用的对象, 这些对象的集合叫做对象池. 组件可以从对象池中借用对象, 完成一些任务之后将它归还给对象池. 返回的对象用于满足调用组件的后续请求, ...
- 浅谈React和VDom关系
组件化 组件的封装 组件的复用 组件的封装 视图 数据 视图和数据之间的变化逻辑 import React, {Component} from 'react'; export default clas ...
- Const 关键字详解
const 标识符 在c++中作为常量修饰符 用来修饰 函数 变量 指针 const 修饰的变量不可以改变值 const 在修饰指针的时候 const 标识符出现在*的左边表示 指向的变量为常量不能 ...
- Centos6.5 VM网络故障,可以Ping 通网关,无法上网或者访问其它网段
首先查看cat /etc/sysconfig/network-scripts/ifcfg-eth0 配置是否正确 查看cat /etc/udev/rules.d/70-persistent-net. ...