#-*- coding:utf-8 -*-
### required libaraied
import os
import matplotlib.image as img
import matplotlib.pyplot as plt
import skimage
from skimage import color, data, transform
from scipy import ndimage
import numpy as np
import tensorflow as tf
from IPython.core.pylabtools import figsize
from natsort import natsorted
import time
import keras
from keras.models import Sequential
from keras.layers import Dense,Flatten,Dropout
from keras.optimizers import Adadelta
from keras import applications
import random
%matplotlib inline

#设置文件目录
Training = r'C:\Users\lcb\fruits-360\Training'
Test = r'C:\Users\lcb\fruits-360\Test'

#获取每类水果中的第五张图像
def load_print_img(root) :
print_img = []
print_label = []
for i in range(len(os.listdir(root))) : #遍历水果种类目录
child1 = os.listdir(root)[i]
child2 = os.listdir(os.path.join(root, child1))
child2 = natsorted(child2) #对第二层目录进行自然数排序,os.listder默认为str排序
path = os.path.join(root, child1, child2[4]) #取出每类的第五张图像
if(path.endswith('.jpg')) :
print_img.append(skimage.data.imread(path))
print_label.append(child1)
return print_img, print_label

#打印每类水果的第五张图像
def print_fruit(print_img, print_label, size) :
plt.figure(figsize(size, size))
for i in range(len(print_img)) :
plt.subplot(11, 7,(i+1)) #图像输出格式为11行7列
plt.imshow(print_img[i]) #打印图像
plt.title(format(print_label[i])) #打印水果种类
plt.axis('off')
plt.show()

#打印水果
print_fruit(load_print_img(Training)[0], load_print_img(Training)[1], 15)

#随机获取水果种类
def get_random_fruits(root, n_classes) :
fruits = []
for i in range(len(os.listdir(root))) : #创建一个1到水果种类总数的list
fruits.append(i)
random_fruits = random.sample(fruits, n_classes) #随机获取n_classes个随机不重复的水果种类
return random_fruits

#获取随机抽取的10类水果的图像
def load(root, random_fruits) :
image_data = [] #存放图像
image_label = [] #存放标签
num_label = [] #存放图像标签码
for i in range(len(random_fruits)) : #遍历水果类型
child1 = os.listdir(root)[i] #第一层子目录(水果种类)
child2 = os.listdir(os.path.join(root, child1)) #第二层子目录(水果图像)
child2 = natsorted(child2) #对第二层目录进行自然数排序,os.listder默认为str排序
for j in range(len(child2)) : #遍历水果图像
path = os.path.join(root, child1, child2[j]) #结合第一二层子目录
if(path.endswith('.jpg')) : #只读取'.jpg'文件(文件后缀是否为'.jpg')
image_data.append(skimage.data.imread(path)) #把文件读取为图像存入image_data
image_label.append(child1) #储存第一层子目录文件名(即水果名)
num_label.append(i) #把第一层子目录文件名的下标作为水果类型的编码
num_label = keras.utils.to_categorical(num_label, n_classes) #把水果类型编码转换为one_hot编码
#print("图片数:{0}, 标签数:{1}".format(len(image_data), len(os.listdir(root))) #输出图片和标签数
return image_data, image_label, num_label

#裁剪图像
def crop(image_data) :
crop_data = []
for i in image_data :
I_crop = skimage.transform.resize(i, (32, 32)) #把图像转换成32*32的格式
crop_data.append(I_crop) #把转换后的图像放入Icrop_data
return crop_data

def fruits_type(random_fruits) :
print('fruits_type:')
for i in random_fruits :
print( os.listdir(Training)[i])

n_classes = 10 #定义水果种类数
#batch_size = 256 #定义块的大小
#batch_num = int(np.array(crop_img).shape[0]/batch_size) #计算取块的次数
x = tf.placeholder(tf.float32,[None, 32, 32, 3]) #申请四维占位符,数据类型为float32
y = tf.placeholder(tf.float32,[None, n_classes]) #申请二维占位符,数据累型为float32
keep_prob = tf.placeholder(tf.float32) #申请一维占位符,数据类型为float32
#epochs=2 #训练次数
dropout=0.75 #每个神经元保留的概率
k_size = 3 #卷积核大小

Weights = {
"conv_w1" : tf.Variable(tf.random_normal([k_size, k_size, 3, 64]), name = 'conv_w1'), \
"conv_w2" : tf.Variable(tf.random_normal([k_size, k_size, 64, 128]), name = 'conv_w2'), \
#"conv_w3" : tf.Variable(tf.random_normal([k_size, k_size, 256, 512]), name = 'conv_w3'), \
"den_w1" : tf.Variable(tf.random_normal([int(32*32/4/4*128), 1024]), name = 'dev_w1'), \
"den_w2" : tf.Variable(tf.random_normal([1024, 512]), name = 'den_w2'), \
"den_w3" : tf.Variable(tf.random_normal([512, n_classes]), name = 'den_w3')
}

bias = {
"conv_b1" : tf.Variable(tf.random_normal([64]), name = 'conv_b1'), \
"conv_b2" : tf.Variable(tf.random_normal([128]), name = 'conv_b2'), \
#"conv_b3" : tf.Variable(tf.random_normal([512]), name = 'conv_b3'), \
"den_b1" : tf.Variable(tf.random_normal([1024]), name = 'den_b1'), \
"den_b2" : tf.Variable(tf.random_normal([512]), name = 'den_b2'), \
"den_b3" : tf.Variable(tf.random_normal([n_classes]), name = 'den_b3')
}

def conv2d(x,W,b,stride=1):
x=tf.nn.conv2d(x,W,strides=[1,stride,stride,1],padding="SAME")
x=tf.nn.bias_add(x,b)
return tf.nn.relu(x)
def maxpool2d(x,stride=2):
return tf.nn.max_pool(x,ksize=[1,stride,stride,1],strides=[1,stride,stride,1],padding="SAME")

def conv_net(inputs, W, b, dropout) :
## convolution layer 1
## 输入32*32*3的数据,输出16*16*64的数据
conv1 = conv2d(x, W["conv_w1"], b["conv_b1"])
conv1 = maxpool2d(conv1, 2)
tf.summary.histogram('ConvLayer1/Weights', W["conv_w1"])
tf.summary.histogram('ConvLayer1/bias', b["conv_b1"])
## convolution layer2
## 输入16*16*64的数据,输出8*8*128的数据
conv2 = conv2d(conv1, W["conv_w2"], b["conv_b2"])
conv2 = maxpool2d(conv2, 2)
tf.summary.histogram('ConvLayer2/Weights', W["conv_w2"])
tf.summary.histogram('ConvLayer2/bias', b["conv_b2"])
## convolution layer3
#conv3 = conv2d(conv2, W["conv_w3"], b["conv_b3"])
#conv3 = maxpool2d(conv3, 2)
#tf.summary.histogram('ConvLayer3/Weights', W["conv_w3"])
#tf.summary.histogram('ConvLayer3/bias', b["conv_b3"])
## flatten
## 把数据拉伸为长度为8*8*128的一维数据
flatten = tf.reshape(conv2,[-1, W["den_w1"].get_shape().as_list()[0]])
## dense layer1
## 输入8192*1的数据,输出1024*1的数据
den1 = tf.add(tf.matmul(flatten, W["den_w1"]), b["den_b1"])
den1 = tf.nn.relu(den1)
den1 = tf.nn.dropout(den1, dropout)
tf.summary.histogram('DenLayer1/Weights', W["den_w1"])
tf.summary.histogram('DenLayer1/bias', b["den_b1"])
## dense layer2
## 1024*1的数据,输出512*1的数据
den2 = tf.add(tf.matmul(den1, W["den_w2"]), b["den_b2"])
den2 = tf.nn.relu(den2)
den2 = tf.nn.dropout(den2, dropout)
tf.summary.histogram('DenLayer2/Weights', W["den_w2"])
tf.summary.histogram('DenLayer2/bias', b["den_b2"])
## out
## 512*1的数据,输出n_classes*1的数据
out = tf.add(tf.matmul(den2, W["den_w3"]), b["den_b3"])
tf.summary.histogram('DenLayer3/Weights', W["den_w3"])
tf.summary.histogram('DenLayer3/bias', b["den_b3"])
return out

def get_data(inputs, batch_size, times):
i = times * batch_size
data = inputs[i : (times+1)*batch_size]
return data

def train_and_test(train_x, train_y, test_x, test_y, epochs, batch_size, times = 1) :
# 初始化全局变量
init=tf.global_variables_initializer()
start_time = time.time()
with tf.Session() as sess:
sess.run(init)
# 把需要可视化的参数写入可视化文件
writer=tf.summary.FileWriter('C:/Users\lcb/fruits-360/tensorboard/Fruit_graph' + str(times), sess.graph)
for i in range(epochs):
batch_num = int(np.array(crop_img).shape[0]/batch_size)
sum_cost = 0
sum_acc = 0
for j in range(batch_num):
batch_x = get_data(train_x, batch_size, j)
batch_y = get_data(train_y, batch_size, j)
sess.run(optimizer, feed_dict={x:batch_x,y:batch_y,keep_prob:0.75})
loss,acc = sess.run([cost,accuracy],feed_dict={x:batch_x,y:batch_y,keep_prob: 1.})
sum_cost += loss
sum_acc += acc
#if((i+1) >= 10 and ((i+1)%10 == 0)) :
#print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc))
result=sess.run(merged,feed_dict={x:batch_x, y:batch_y, keep_prob:0.75})
writer.add_summary(result, i)
arg_cost = sum_cost/batch_num
arg_acc = sum_acc/batch_num
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(arg_cost),"Training accuracy","{:.5f}".format(arg_acc))
end_time = time.time()
print('Optimization Completed')
print('Testing Accuracy:',sess.run(accuracy,feed_dict={x:test_x, y:test_y,keep_prob: 1}))
print('Total processing time:',end_time - start_time)

pred=conv_net(x,Weights,bias,keep_prob)
cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
tf.summary.histogram('loss', cost)
optimizer=tf.train.AdamOptimizer(0.01).minimize(cost)
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
merged=tf.summary.merge_all()

for i in range(10) :
random_fruits = get_random_fruits(Training, n_classes)
img_data, img_label, num_label = load(Training, random_fruits)
crop_img = crop(img_data)
test_data, test_label, test_num_label = load(Test, random_fruits)
crop_test = crop(test_data)
print("TIMES"+str(i+1))
fruits_type(random_fruits)
print("\n")
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, (i+1))
print("\n\n\n")

vgg_model=applications.VGG19(include_top=False,weights='imagenet')
vgg_model.summary()

bottleneck_feature_train=vgg_model.predict(np.array(crop_img),verbose=1)
bottleneck_feature_test=vgg_model.predict(np.array(crop_test),verbose=1)

print(bottleneck_feature_train.shape,bottleneck_feature_test.shape)

my_model=Sequential()
my_model.add(Flatten())
my_model.add(Dense(512,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(256,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(n_classes,activation='softmax'))
my_model.compile(optimizer=Adadelta(),loss="categorical_crossentropy",\
metrics=['accuracy'])
my_model.fit(bottleneck_feature_train,num_label,batch_size=128,epochs=50,verbose=1)

evaluation=my_model.evaluate(bottleneck_feature_test,test_num_label,batch_size=128,verbose=0)
print("loss:",evaluation[0],"accuracy:",evaluation[1])

random_fruits = get_random_fruits(Training, n_classes)
img_data, img_label, num_label = load(Training, random_fruits)
crop_img = crop(img_data)
test_data, test_label, test_num_label = load(Test, random_fruits)
crop_test = crop(test_data)
fruits_type(random_fruits)

optimizer=tf.train.AdadeltaOptimizer(0.01).minimize(cost)
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, 'Adadelta')

optimizer=tf.train.AdagradOptimizer(0.01).minimize(cost)
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, 'Adagrad')

optimizer=tf.train.FtrlOptimizer(0.01).minimize(cost)
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, 'Ftrl')

吴裕雄 python神经网络 水果图片识别(5)的更多相关文章

  1. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

  2. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  3. 吴裕雄 python神经网络 水果图片识别(2)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  4. 吴裕雄 python神经网络 水果图片识别(1)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...

  5. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  6. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  7. 吴裕雄 python 神经网络——TensorFlow图片预处理调整图片

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  8. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  9. 吴裕雄 python 神经网络——TensorFlow图片预处理

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读 ...

随机推荐

  1. C语言格式化%整理

    以输出为例: #include <stdio.h> main() { printf("**进制****************************************** ...

  2. MySQL-MMM实现MySQL高可用

    一.MMM简介 MMM(Master-Master replication manager for MySQL)是一套支持双主故障切换和双主日常管理的脚本程序.MMM使用Perl语言开发,主要用来监控 ...

  3. Solr——Windows下部署Solr6.6.0至Tomcat8.5.28(一)

    一.window 环境 solr 6.6.3 下载地址 http://archive.apache.org/dist/lucene/solr/ jdk 1.8    tomcat 8.5 本机tomc ...

  4. Python笔记:Python中is和==的区别

    ==是比较两端的值 is是比较内存地址: 数据的内存地址可用id()获取 在Python中为了存储数据占用较小的内存,对于int类型和str类型内设了小数据池,其中的数据在被使用时,会使用同一内存地址 ...

  5. 制作签名jar放置到前端资源目录下

    给jar包打签名keytool -genkey -keystore myKeystore -alias jwstest查看签名信息jarsigner -keystore myKeystore data ...

  6. 28.Mongodb问题解决

    mongodb问题配置解决: 之前官网下载msi文件安装总是出现问题,这次使用zip压缩包直接解压使用(较为省力). 链接:https://pan.baidu.com/s/1G-jh7CXD1gCz8 ...

  7. The type javax.swing.JComponent cannot be resolved. It is indirectly referenced from required .class files

    一段简单程序, frame.add(lbl);出现 问题. 也不知道为什么就是这里, 而我Ctrl + Shift + T 确实也是没有发现 JComponent . public void disp ...

  8. kubernetes下安装mysql

    参考文档:https://blog.csdn.net/sealir/article/details/81177747 注:有mysql安装在k8s集群内,集群外且通过k8s service endpo ...

  9. module模块和包

    import 和 from 调用 module 目录有calc.py 和  test.py 两个文件 calc.py文件内容: def add(x,z): return x+z def sub(x,z ...

  10. TCP的窗口滑动机制

    TCP的滑动窗口主要有两个作用,一是提供TCP的可靠性,二是提供TCP的流控特性.同时滑动窗口机制还体现了TCP面向字节流的设计思路. 可靠:对发送的数据进行确认 流控制:窗口大小随链路变化. 一.t ...