import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, color_ordering=0): if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32./255.) image = tf.image.random_saturation(image, low…
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 以下TensorFlow程序完成了从图像片段截取,到图像大小调整再到图像翻转及色彩调整的整个图像预处理过程. #!/usr/bin/env python # -*- coding: UTF-8 -*- # coding=utf-8 """ @author: Li Tian @contact: 694317828@qq.com @software: pycharm @file: figure_…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读取 # img_raw = tf.gfile.FastGFile('E:\\myresource\\moutance.jpg','rb').read() img_raw = open('E:\\myresource\\moutance.jpg','rb').read() # 把二进制文件解码为uin…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, color_ordering=0): ''' 随机调整图片的色彩,定义两种处理顺序. ''' if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32./255.) image = tf.image.…
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 # 第一层卷积层的尺寸和深度 CONV1_DEEP = 32 CONV1_SIZE = 5 # 第二层卷积层的尺寸和深度 CONV2_DEEP = 64 CONV2_SIZE = 5 # 全连接层的节点个数 FC…
import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords") filename_queue = tf.train.string_input_producer(files, shuffle=False) # 读取文件. reader = tf.TFRecordReader() _,serialized_example = reader.read(filen…
import tensorflow as tf def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) num_shards = 2 instances_per_shard = 2 for i in range(num_shards): filename = ('E:\\temp\\data.tfrecords-%.5d-of-%.5d' % (i, num_…
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 定义函数转化变量类型. def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.…
import tensorflow as tf from numpy.random import RandomState batch_size = 8 w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2= tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1)) x = tf.placeholder(tf.float32, shape=(None, 2), name="…
import tempfile import tensorflow as tf train_files = tf.train.match_filenames_once("E:\\output.tfrecords") test_files = tf.train.match_filenames_once("E:\\output_test.tfrecords") # 解析一个TFRecord的方法. def parser(record): features = tf.pa…