import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from sklearn.model_selection import train_test_split def load_classification_data(): # 使用 scikit-learn 自带的手写识别数据集 Digit Dataset digits=datasets.load_digits() X…
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from sklearn.model_selection import train_test_split def create_regression_data(n): ''' 创建回归模型使用的数据集 ''' X =5 * np.random.rand(n, 1) y = np.sin(X).ravel() # 每隔…
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import datasets from sklearn.semi_supervised.label_propagation import LabelSpreading def load_data(): ''' 加载数据集 ''' digits = datasets.load_digits() ###### 混洗样…
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics import adjusted_rand_score from sklearn.datasets.samples_generator import make_blobs def create_data(centers,num=100,std=0.7): X, labels_true = make_b…
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics import adjusted_rand_score from sklearn.datasets.samples_generator import make_blobs def create_data(centers,num=100,std=0.7): X, labels_true = make_b…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' diabetes = datasets.load_diabetes() #使用 scikit-lea…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' diabetes = datasets.load_diabetes() #使用 scikit-lea…
import matplotlib import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle n = 1000 #number of points to create xcord = np.zeros((n)) ycord = np.zeros((n)) markers =[] colors =[] fw = open('D:\\LearningResource\\mac…
import numpy as np import operator as op from os import listdir def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = np.tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distan…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_classfication(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.lo…