代码:

%% ------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 8.2 \n\n');
banner();
%% ------------------------------------------------------------------------ % digital resonator
r = 0.8
%r = 0.9
%r = 0.99
omega0 = pi/4; % corresponding system function Direct form
% zeros at z=±1
G = (1-r)*sqrt(1+r*r-2*r*cos(2*omega0)) / sqrt(2*(1-cos(2*omega0))) % gain parameter
b = G*[1 0 -1]; % denominator
a = [1 -2*r*cos(omega0) r*r]; % numerator % precise resonant frequency and 3dB bandwidth
omega_r = acos((1+r*r)*cos(omega0)/(2*r));
delta_omega = 2*(1-r);
fprintf('\nResonant Freq is : %.4fpi unit, 3dB bandwidth is %.4f \n', omega_r/pi,delta_omega);
% [db, mag, pha, grd, w] = freqz_m(b, a); figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
set(gca,'YTickMode','manual','YTick',[-60,-30,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
%set(gca,'YTickMode','manual','YTick',[0,1.0]); figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Pole-Zero Plot')
set(gcf,'Color','white');
zplane(b,a);
title(sprintf('Pole-Zero Plot, r=%.2f %.2f\\pi',r,omega0/pi));
%pzplotz(b,a); % Impulse Response
fprintf('\n----------------------------------');
fprintf('\nPartial fraction expansion method: \n');
[R, p, c] = residuez(b,a)
MR = (abs(R))' % Residue Magnitude
AR = (angle(R))'/pi % Residue angles in pi units
Mp = (abs(p))' % pole Magnitude
Ap = (angle(p))'/pi % pole angles in pi units
[delta, n] = impseq(0,0,50);
h_chk = filter(b,a,delta); % check sequences h = ( 0.8.^n ) .* (2*0.232*cos(pi*n/4) - 2*0.0509*sin(pi*n/4)) -0.283 * delta; % r=0.8
%h = ( 0.9.^n ) .* (2*0.1063*cos(pi*n/4) - 2*0.0112*sin(pi*n/4)) -0.1174 * delta; % r=0.9
%h = ( 0.99.^n ) .* (2*0.0101*cos(pi*n/4) - 2*0.0001*sin(pi*n/4)) -0.0102 * delta; % r=0.99 figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator, h(n) by filter and Inv-Z ')
set(gcf,'Color','white'); subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]);
xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter'); subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]);
xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z'); [db, mag, pha, grd, w] = freqz_m(h, [1]); figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator, h(n) by Inv-Z ')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
set(gca,'YTickMode','manual','YTick',[-60,-30,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
%set(gca,'YTickMode','manual','YTick',[0,1.0]);

  运行结果:

这里的G为增益系数,使得幅度谱在共振频率处最大,等于1

系统函数部分分式展开

系统函数的零极点图

h_chk是由将脉冲序列当成系统输入而得到的,h是由系统函数部分分时展开后查表求逆z变换得到的,

二者幅度谱一致,但是相位谱和群延迟稍有不同。

r=0.9和0.99的结果这里就不放了。

《DSP using MATLAB》Problem 8.2的更多相关文章

  1. 《DSP using MATLAB》Problem 7.27

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  2. 《DSP using MATLAB》Problem 7.26

    注意:高通的线性相位FIR滤波器,不能是第2类,所以其长度必须为奇数.这里取M=31,过渡带里采样值抄书上的. 代码: %% +++++++++++++++++++++++++++++++++++++ ...

  3. 《DSP using MATLAB》Problem 7.25

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  4. 《DSP using MATLAB》Problem 7.24

    又到清明时节,…… 注意:带阻滤波器不能用第2类线性相位滤波器实现,我们采用第1类,长度为基数,选M=61 代码: %% +++++++++++++++++++++++++++++++++++++++ ...

  5. 《DSP using MATLAB》Problem 7.23

    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output Info a ...

  6. 《DSP using MATLAB》Problem 7.16

    使用一种固定窗函数法设计带通滤波器. 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  7. 《DSP using MATLAB》Problem 7.15

    用Kaiser窗方法设计一个台阶状滤波器. 代码: %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  8. 《DSP using MATLAB》Problem 7.14

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  9. 《DSP using MATLAB》Problem 7.13

    代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...

  10. 《DSP using MATLAB》Problem 7.12

    阻带衰减50dB,我们选Hamming窗 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

随机推荐

  1. 使用CSS为图片添加更多趣味的5种方法

    使用Photoshop为每个图片添加某种样式虽然可行,但会是相当乏味且困难的长久工作.下面要介绍的CSS技巧将帮助你从痛苦中解脱出来! 阴影效果 通过使用带有一些padding之的背景图来添加阴影效果 ...

  2. 《移山之道》第十一章:两人合作 读书笔记 PB16110698 第六周(~4.15)

     本周在考虑阅读材料时,我翻阅了<移山之道>,正好看到这一章:两人合作,心想:正好,我们正值结对作业的紧要关头,书中两人合作的宝贵经验和教诲应当对我们有很大帮助.于是,我开始一边在ddl苦 ...

  3. Random类和Math.random()方法

    一.Random类的定义Random类位于 java.util 包中,主要用于生成伪 随机数Random类将 种子数 作为随机算法的起源数字,计算生成伪随机数,其与生成的随机数字的区间无关创建Rand ...

  4. xx市xx项目运维工作方案

    注:提供给各位正在做项目,或准备做项目的朋友,仅供参考,用于后期运维提供的方案模板.仅供参考. 因为直接从word复制,会有一些排版的问题.可以留邮箱. xx市xx项目运维工作方案 xx有限公司 20 ...

  5. Android studio 添加引用Module项目 与 设置Module项目的Libs的Jar在主项目里使用

    前言 添加引用Module项目 设置Module项目的Libs的Jar在主项目里使用 1.在项目里添加libs包,并且加入jar 2.设置这个module项目的build.gradle depende ...

  6. Docker 尝试安装rabbitmq实践笔记

    docker pull rabbitmq 自定義的rabbitmq Dockerfile # base image FROM rabbitmq:3.7-management # running req ...

  7. bootstrap-----流体布局解析

    流体布局容器 容器的width为auto,只是两边加了15px的padding. 流体布局容器 容器的width为auto,只是两边加了15px的padding. <div class=&quo ...

  8. 阿里云Aliplayer高级功能介绍(一):视频截图

    基本介绍 H5 Video是不提供截图的API的, 视频截图需要借助Canvas,通过Canvas提供的drawImage方法,把Video的当前画面渲染到画布上, 最终通过toDataURL方法可以 ...

  9. Redis-GEO

    一. Redis的GEO特性 Redis3.2版本提供了GEO功能,支持存储地理位置信息用来实现诸如摇一摇,附近位置这类依赖于地理位置信息的功能.二. 命令2.1 增加地理位置信息 命令:geoadd ...

  10. node.js在ubuntu上和windows上的安装

    Ubuntu 上安装 Node.js Node.js 源码安装 以下部分我们将介绍在Ubuntu Linux下安装 Node.js . 其他的Linux系统,如Centos等类似如下安装步骤. 在 G ...