《DSP using MATLAB》Problem 8.2

代码:
%% ------------------------------------------------------------------------
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 8.2 \n\n');
banner();
%% ------------------------------------------------------------------------ % digital resonator
r = 0.8
%r = 0.9
%r = 0.99
omega0 = pi/4; % corresponding system function Direct form
% zeros at z=±1
G = (1-r)*sqrt(1+r*r-2*r*cos(2*omega0)) / sqrt(2*(1-cos(2*omega0))) % gain parameter
b = G*[1 0 -1]; % denominator
a = [1 -2*r*cos(omega0) r*r]; % numerator % precise resonant frequency and 3dB bandwidth
omega_r = acos((1+r*r)*cos(omega0)/(2*r));
delta_omega = 2*(1-r);
fprintf('\nResonant Freq is : %.4fpi unit, 3dB bandwidth is %.4f \n', omega_r/pi,delta_omega);
% [db, mag, pha, grd, w] = freqz_m(b, a); figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
set(gca,'YTickMode','manual','YTick',[-60,-30,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
%set(gca,'YTickMode','manual','YTick',[0,1.0]); figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Pole-Zero Plot')
set(gcf,'Color','white');
zplane(b,a);
title(sprintf('Pole-Zero Plot, r=%.2f %.2f\\pi',r,omega0/pi));
%pzplotz(b,a); % Impulse Response
fprintf('\n----------------------------------');
fprintf('\nPartial fraction expansion method: \n');
[R, p, c] = residuez(b,a)
MR = (abs(R))' % Residue Magnitude
AR = (angle(R))'/pi % Residue angles in pi units
Mp = (abs(p))' % pole Magnitude
Ap = (angle(p))'/pi % pole angles in pi units
[delta, n] = impseq(0,0,50);
h_chk = filter(b,a,delta); % check sequences h = ( 0.8.^n ) .* (2*0.232*cos(pi*n/4) - 2*0.0509*sin(pi*n/4)) -0.283 * delta; % r=0.8
%h = ( 0.9.^n ) .* (2*0.1063*cos(pi*n/4) - 2*0.0112*sin(pi*n/4)) -0.1174 * delta; % r=0.9
%h = ( 0.99.^n ) .* (2*0.0101*cos(pi*n/4) - 2*0.0001*sin(pi*n/4)) -0.0102 * delta; % r=0.99 figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator, h(n) by filter and Inv-Z ')
set(gcf,'Color','white'); subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]);
xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter'); subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]);
xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z'); [db, mag, pha, grd, w] = freqz_m(h, [1]); figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator, h(n) by Inv-Z ')
set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
set(gca,'YTickMode','manual','YTick',[-60,-30,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
%set(gca,'YTickMode','manual','YTick',[0,1.0]);
运行结果:
这里的G为增益系数,使得幅度谱在共振频率处最大,等于1

系统函数部分分式展开


系统函数的零极点图

h_chk是由将脉冲序列当成系统输入而得到的,h是由系统函数部分分时展开后查表求逆z变换得到的,
二者幅度谱一致,但是相位谱和群延迟稍有不同。



r=0.9和0.99的结果这里就不放了。
《DSP using MATLAB》Problem 8.2的更多相关文章
- 《DSP using MATLAB》Problem 7.27
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.26
注意:高通的线性相位FIR滤波器,不能是第2类,所以其长度必须为奇数.这里取M=31,过渡带里采样值抄书上的. 代码: %% +++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.25
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.24
又到清明时节,…… 注意:带阻滤波器不能用第2类线性相位滤波器实现,我们采用第1类,长度为基数,选M=61 代码: %% +++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.23
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output Info a ...
- 《DSP using MATLAB》Problem 7.16
使用一种固定窗函数法设计带通滤波器. 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.15
用Kaiser窗方法设计一个台阶状滤波器. 代码: %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.14
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.13
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.12
阻带衰减50dB,我们选Hamming窗 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
随机推荐
- IRP FLAGS
IRP所有标识位的含义,是 _IRP . flags 这个成员 IRP_NOCACHE 0x00000001 //表示I/O请求从存储的媒介而不是高速缓存中读取数据 IRP_PAGING_IO 0x0 ...
- 现代软件工程HW2:结对编程-生成五则运算式-Core10组 [PB16110698+PB16120162]
作业具体要求点 这里 Core组要求: 1.Calc() 这个Calc 函数接受字符串的输入(字符串里就是算术表达式,例如 “5*3.5”,“7/8 - 3/8 ”,“3 + 90 * 0.3”等等) ...
- Linux 实用指令(10)-RPM和YUM
目录 RPM 和 YUM 1 rpm 包的管理 1.1 介绍 1.2 rpm包的简单查询指令 1.3 rpm包名基本格式 1.4 rpm包的其他查询指令: 1.5 卸载rpm 包 1.6 安装rpm包 ...
- MySQL数据库之DDL(数据定义语言)
1.MySQL数据库之DDL创建.删除.切换 (1)查看所有数据库 show databases: (2)切换数据库 use 数据库名: (3)创建数据库 create database 数据库名: ...
- JAVA数据结构之二叉树
用树作为存储数据的结构兼具像数组一样查询速度快和像链表一样具有很快的插入和删除数据项的优点 我们用圆点表示节点,连接圆的直线表示边如下图所示就表示了一颗树,接下来我们讨论的二叉树即每个节点最多只有两个 ...
- css---8 过渡属性刨析
1. transition-property 默认值为 all,表示所有可被动画的属性都表现出过渡动 可以指定多个 property 属性值: none 没有过渡动画. all 所有可被动 ...
- Python 输入字符串找(String)下标 没有返回-1
str = "abcdefg123456"a = input("请输入一个字母或数字:")num = 0result = -1while num < le ...
- 【JZOJ6360】最大菱形和(rhombus)
description analysis 容易想到把原矩阵翻转\(45°\),然后每个数再用\(0\)隔开 然后就变成了求最大子正方形,求完二维前缀和之后就很好做了 code #pragma GCC ...
- js实现前端动态筛选表格内容
代码参考: http://www.sharejs.com/codes/javascript/4289 http://www.jb51.net/article/103420.htm https://ww ...
- Pascal 排序算法
Pascal 排序 排序 排序就是将杂乱无章的数据元素,通过一定的方法按关键字顺序排列的过程.排序问题是一个十分重要的问题,并且排序的方法有很多种: 例子:输入20个数,将它们按照从高到低的次序排 ...