import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Any results you write to the current directory are saved as output. import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline…
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np…
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import matplotlib.p…
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np…
# import pandas import pandas as pd # creating a DataFrame pd.DataFrame({'Yes': [50, 31], 'No': [101, 2]}) # another example of creating a dataframe pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland']}) pd.DataFram…
import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data visualization import matplotlib.pyplot as plt # Data Visualization import matplotlib.gridspec as gridspec # subplots and grid from wordcloud import Wor…
import numpy as np import pandas as pd import os import matplotlib.pyplot as pl import seaborn as sns import warnings warnings.filterwarnings('ignore') data = pd.read_csv('F:\\kaggleDataSet\\MedicalCostPersonal\\insurance.csv') data.head() data.isnul…
import os import numpy as np import pandas as pd from datetime import datetime import matplotlib import matplotlib.pyplot as plt import seaborn as sns sns.set_style('white') %matplotlib inline %load_ext autoreload %autoreload 2 def to_utms(ut): retur…
import pandas as pd pd.DataFrame({'Yes': [50, 21], 'No': [131, 2]}) pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']}) pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']},…
#We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler from sklearn.metrics impo…
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns %matplotlib inline np.random.seed(2) from sklearn.model_selection import train_test_split from sklearn.metrics import confus…
df = pd.read_csv("F:\\kaggleDataSet\\chennai-water\\chennai_reservoir_levels.csv") df["Date"] = pd.to_datetime(df["Date"], format='%d-%m-%Y') df.head() import datetime def scatter_plot(cnt_srs, color): trace = go.Scatter( x=c…
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # plotly import chart_studio.plotly as py from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import plotly…
drop_list1 = ['perimeter_mean','radius_mean','compactness_mean','concave points_mean','radius_se','perimeter_se','radius_worst','perimeter_worst','compactness_worst','concave points_worst','compactness_se','concave points_se','texture_worst','area_wo…
用 Python 进行数据分析处理,其中最炫酷的就属 Pa ndas 套件了 . 比如,如果我 们通过 Requests 及 Beautifulsoup 来抓取网页中的表格数据 , 需要进行较复 杂的搜寻才能抓取 , 但通过 Pandas 不但可以自动读取网页中的表格数据,还能对数 据进行修改.排序等处理,以及给制统计图表 . Pandas 主要的数据类型有两种: Series 是一维数据结构, 其用法与列表类 似: DataFrame 是 二维数据结 构, 表格 即为 DataFrame 的典…
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window10.0 实验内容和原理 (1)实验内容: 使用k近邻算法改进约会网站的配对效果.海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选.她将曾经交往过的的人总结为三种类型:不喜欢的人.魅力一般的人.极具魅力的人.尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类.使用KNN算…
Web 数据抓取技术具有非常巨大的应用需求及价值, 用 Python 在网页上收集数据,不仅抓取数据的操作简单, 而且其数据分析功能也十分强大. 通过 Python 的时lib 组件中的 urlparse 函数,可轻松解 析指定网址的内容,在接收返回的 ParseResult 对象后,即 可通过其属性取出网址中各项有用信息 . Python 还可进一步用 requests 函数抓取网页源代码, 再通过相关语句或正则表达式搜索得到指定的数据. 如果要抓取的数据比较复杂, Python 还可以通过功…
Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件.它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式. from pylab import * size = 128,16 dpi = 72.0 figsize= size[0]/float(dpi),size[1]/float(dpi) fig = figure(figsize=figsize, dpi=dpi) fig.patch.set_alpha(0) axes([0,0,1,1], frameon=Fal…
本博文使用的数据库是MySQL和MongoDB数据库.安装MySQL可以参照我的这篇博文:https://www.cnblogs.com/tszr/p/12112777.html 其中操作Mysql使用到的python模块是pymysql,下面是有关这个模块的使用说明: 创建一个数据库test create DATABASE taobao; 下面将要安装一个navicat for mysql这样的软件,下载链接:https://www.pcsoft.com.cn/soft/20832.html?…
用python爬取动态网页时,普通的requests,urllib2无法实现.例如有些网站点击下一页时,会加载新的内容,但是网页的URL却没有改变(没有传入页码相关的参数),requests.urllib2无法抓取这些动态加载的内容,此时就需要使用Selenium了. 使用Selenium需要选择一个调用的浏览器并下载好对应的驱动,我使用的是Chrome浏览器. 将下载好的chromedrive.exe文件复制到系统路径:E:\python\Scripts下,如果安装python的时候打path…
这篇博文主要是对我的这篇https://www.cnblogs.com/tszr/p/12198054.html爬虫效率的优化,目的是为了提高爬虫效率. 可以根据出发地同时调用多个CPU,每个CPU运行一个出发地的脚本,如果你的电脑有8个CPU,那么将会每次同时获取8个出发地的数据. 代码如下: import time import json import pymongo import requests import urllib.request #使用MongoDB创建数据库.表 client…
import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data 1.在自己编译器运行的python环境的...\Python3\Lib\site-packages,该目录下有文件夹tensorflow, tensorflow_core, ensorflow_estimator 2.进入tensorflow_core\examples文件夹,如果文件夹下只有s…
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile import tensorflow.contrib.slim as slim # 加载通过TensorFlow-Slim定义好的inception_v3模型. import tensorflow.contrib.slim.python.slim.nets.incepti…
分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值 的次数,然后除以数据集的实例总数,就得到了特征取该值的概率. 首先从一个最简单的概率分类器开始,然后给 出一些假设来学习朴素贝叶斯分类器.我们称之为“朴素”,是因为整个形式化过程只做最原始.最简单的假设. 基于贝叶斯决策理论的分类方法 朴素贝叶斯是贝叶斯决策理论的一部…
我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内 在含义,决策树的主要优势就在于数据形式非常容易理解. 决策树很多任务都 是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列 规则,机器学习算法最终将使用这些机器从数据集中创造的规则.专家系统中经常使用决策树,…
要想在没有安装 Python 集成环境的电脑上运行开发的 Python 程序,必须把 Python 文件打包成 .exe 格式的可执行 文件. Python 的打包工作 PyInstaller 提供了两种把 .py 文件包 成 .exe 文件的方式: 第一种方式是把由 .py 文件打包而成的 .exe 文件及相 关文件放在一个目录中 . 这种方式是默认方式,称为 onedir 方式. 第二种方式是加上-F 参数后把制作出的 .exe 打包成一 个独立的 .exe 格式的可执行文件 , 称为 on…
游戏开发在软件开发领域占据了非常重要的位直.游 戏开发需要用到的技术相当广泛,除了多媒体.图片.动 画的处理外,程序设计更是游戏开发的核心内容. Py game 是为了让 Python 能够进行游戏开发而发展出 来的包,通过它, Python 可以实现对音效.音乐.图片. 动画的控制,可以说这是一个功能强大而完整的包. Pygame 是专门为游戏开发而推出的 Python 包,它是从 Simple Directmedia Layer CS DL) 延伸而来的. SDL 与 DirectX 类似,…
除了对图片. Word 等普通格式的文件进行处理外, Python 还有强大的多媒体文件操作能力,如对音频.视频 文件的操作 . 如果要播放音乐,我们可以用 pygame 包中的 mixer 对 象. mixer 对象中可以用 Sound 和 music 对象进行音乐播放. Sound 对象适合播放较短的音乐,如 OGG 和 WAV 格式的 音频文件:而 music 对象除了可播放 OGG 和 WAV 音频文 件外,还可以播放 MP3 文件,并进行相关的控制 . 关于音乐与音乐的播放 pygam…
在多个文本文件中查找 我们首先来学习文本文件的查找字符 . 我们通过 os.walk 扩大查找范围, 查找指定目录和子目录下的文件. 应用程序总览 读取 当 前目录及子目录下的所有 PY 和 txt 文本文件,搜索这些文件中是否包含 指定的字符“ shutil ”. 应用程序内容 import os cur_path=os.path.dirname(__file__) # 取得当前路径 sample_tree=os.walk(cur_path) keyword="shutil" for…
Python 在文件处理方面表现突出,关于文件的处理 也是很多人经常用到的功能. 对 Python 的文件处理的技巧进行综合应用,比如把大量文件 的复制.按指定的文件名进行保存.找出重复的照片.将 所有的图片更改为相同大小等. 除此之外,用户还可以利用 Python 程序来实现文件的 查找功能. 文件管理应用 包括大量文件的 复制.! 根据指定的名称保存文件.找出 重复照片.将所有的图片更改为相同的大小 . 在日常生活中,我们也许还有过这样的体会:经常忘记以前创建的文件的保存 位置,这也可以利用…